Pair production and multiple Coulomb-scattering influence on the electromagnetic-shower spread

[1]  T. Gabriel,et al.  Calculated response of a total liquid argon calorimeter to protons and electrons in the 0.5 5.0 GeV energy range , 1980 .

[2]  R. Kephart,et al.  The segmented calorimeter: A study of hadron shower structure , 1979 .

[3]  L. Jones The separations between hadrons and electromagnetic particles using an ionization calorimeter , 1977 .

[4]  E. Longo,et al.  Monte Carlo calculation of photon-initiated electromagnetic showers in lead glass , 1975 .

[5]  Gianni Penso,et al.  Experimental results on the production and decay modes of the 3101 MeV resonance at ADONE , 1974 .

[6]  H. Nagel,et al.  Elektron-Photon-Kaskaden in Blei , 1965 .

[7]  H. Nagel ELECTRON-PHOTON CASCADES IN LEAD. MONTE-CARLO CALCULATION FRO PRIMARY ELECTRON ENERGIES BETWEEN 100 AND 1000 Mev , 1965 .

[8]  E. Becklin,et al.  EXPERIMENTS ON THE AVERAGE CHARACTERISTICS OF CASCADE SHOWERS PRODUCED IN LEAD BY 500- AND 1000-Mev ELECTRONS , 1964 .

[9]  C. Heusch,et al.  LONGITUDINAL BEHAVIOR OF ELECTROMAGNETIC SHOWERS , 1964 .

[10]  H. Thom Showers in Lead Produced by Electrons with Energies from 300 MeV to 1 BeV , 1964 .

[11]  R. Kajikawa Direct Measurement of Shower Electrons with “Glass-Metal” Spark Chambers , 1963 .

[12]  H. S. Moran,et al.  Studies of the Longitudinal Development of Electron—Photon Cascade Showers , 1963 .

[13]  H. Messel,et al.  ENERGY DISTRIBUTION IN LOW-ENERGY ELECTRON-PHOTON SHOWERS IN LEAD ABSORBERS , 1962 .

[14]  B. Rossi,et al.  High-Energy Particles , 1953 .