Interpolation of finite rotations in flexible multi-body dynamics simulations
暂无分享,去创建一个
O. Bauchau | A. Epple | S. Heo | O A Bauchau | A Epple | S Heo
[1] H. L. Hime. “The Elements of Quaternions” , 1894, Nature.
[2] Thomas Freud. Wiener,et al. Theoretical analysis of gimballess inertial reference equipment using delta-modulated instruments , 1962 .
[3] M. Géradin,et al. Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra , 1988 .
[4] Roger A. Wehage. Quaternions and Euler Parameters — A Brief Exposition , 1984 .
[5] M. Shuster. A survey of attitude representation , 1993 .
[6] Leonhard Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti , 2013, 1307.7187.
[7] P. Betsch,et al. A DAE Approach to Flexible Multibody Dynamics , 2002 .
[8] A. Ibrahimbegovic,et al. Computational aspects of vector-like parametrization of three-dimensional finite rotations , 1995 .
[9] M. Crisfield. A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .
[10] K. Bathe. Finite Element Procedures , 1995 .
[11] Malcolm D. Shuster. Survey of attitude representations , 1993 .
[12] J. C. Simo,et al. A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .
[13] Robert L. Taylor,et al. On the role of frame-invariance in structural mechanics models at finite rotations , 2002 .
[14] K. Spring. Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: A review , 1986 .
[15] M. Crisfield,et al. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[16] O. Bauchau,et al. The Vectorial Parameterization of Rotation , 2003 .
[17] Ignacio Romero,et al. The interpolation of rotations and its application to finite element models of geometrically exact rods , 2004 .
[18] O. Bauchau. Computational Schemes for Flexible, Nonlinear Multi-Body Systems , 1998 .
[19] Ahmed A. Shabana,et al. Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .
[20] A. Shabana. Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics , 1998 .
[21] J. C. Simo,et al. A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .
[22] M. Géradin,et al. A beam finite element non‐linear theory with finite rotations , 1988 .
[23] Ahmed A. Shabana,et al. Application of deformable-body mean axis to flexible multibody system dynamics , 1986 .
[24] E. Reissner. On finite deformations of space-curved beams , 1981 .
[25] Gordan Jelenić,et al. Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics , 1999 .
[26] P. Betsch,et al. Frame‐indifferent beam finite elements based upon the geometrically exact beam theory , 2002 .
[27] Arthur Cayley,et al. The Collected Mathematical Papers: On certain results relating to Quaternions , 2009 .
[28] Ignacio Romero,et al. An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum conserving scheme in dynamics , 2002 .
[29] Stanley W. Shepperd,et al. Quaternion from Rotation Matrix , 1978 .
[30] R. A. Spurrier. Comment on " Singularity-Free Extraction of a Quaternion from a Direction-Cosine Matrix" , 1978 .
[31] E. Reissner,et al. On One‐Dimensional Large‐Displacement Finite‐Strain Beam Theory , 1973 .
[32] A. Shabana,et al. A Coordinate Reduction Technique for Dynamic Analysis of Spatial Substructures with Large Angular Rotations , 1983 .
[33] K. C. Gupta,et al. An historical note on finite rotations , 1989 .
[34] B. J. Hsieh,et al. Non-Linear Transient Finite Element Analysis with Convected Co--ordinates , 1973 .
[35] E. Reissner. On one-dimensional finite-strain beam theory: The plane problem , 1972 .
[36] J. Stuelpnagel. On the Parametrization of the Three-Dimensional Rotation Group , 1964 .