Improving Recall and Precision of a Personalized Semantic Search Engine for E-learning

The main objective of this paper is to propose and evaluate an architecture that provides, manages, and collects data that permit high levels of adaptability and relevance to the user profiles. In addition, we implement this architecture on a platform called HyperManyMedia. To achieve this objective, an approach for personalized search is implemented that takes advantage of the semantic Web standards (RDF and OWL) to represent the content and the user profiles. The framework consists of the following phases: (1) building the semantic E-learning domain using the known college and course information as concept and sub-concept, (2) generating the semantic user profiles as ontologies, (3) clustering the documents to discover more refined sub-concepts, (4) reranking the user’s search results based on his/her profile, and (5) providing the user with semantic recommendations. The implementation of the ontologies models is separate from the design and implementation of the information retrieval system, thus providing a modular framework that is easy to adapt and port to other platforms. Finally, the experimental results show that the user context can be effectively used for improving the precision and recall in E-learning search, particularly by re-ranking the search results based on the user profiles.

[1]  Sns Rajalakshmi,et al.  A Web Usage Mining Framework for Mining Evolving User Profiles in Dynamic Web Sites , 2012 .

[2]  Peter Willett,et al.  Comparison of Hierarchie Agglomerative Clustering Methods for Document Retrieval , 1989, Comput. J..

[3]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[4]  George Karypis,et al.  Hierarchical Clustering Algorithms for Document Datasets , 2005, Data Mining and Knowledge Discovery.

[5]  Oren Etzioni,et al.  Web document clustering: a feasibility demonstration , 1998, SIGIR '98.

[6]  George Karypis,et al.  A Comparison of Document Clustering Techniques , 2000 .

[7]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[8]  GauchSusan,et al.  Ontology-based personalized search and browsing , 2003 .

[9]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[10]  Susan Brewer,et al.  Information storage and retrieval , 1959, ACM '59.

[11]  Bamshad Mobasher,et al.  Ontological User Profiles for Representing Context in Web Search , 2007, 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops.

[12]  George Karypis,et al.  Comparison of Agglomerative and Partitional Document Clustering Algorithms , 2002 .

[13]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[14]  Kevin Knight,et al.  Toward Distributed Use of Large-Scale Ontologies t , 1997 .

[15]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[16]  Timothy W. Finin,et al.  Enabling Technology for Knowledge Sharing , 1991, AI Mag..

[17]  Dieter Fensel,et al.  Knowledge Engineering: Principles and Methods , 1998, Data Knowl. Eng..

[18]  George Karypis,et al.  Evaluation of hierarchical clustering algorithms for document datasets , 2002, CIKM '02.

[19]  Olfa Nasraoui,et al.  Dual Representation of the Semantic User Profile for Personalized Web Search in an Evolving Domain , 2009, AAAI Spring Symposium: Social Semantic Web: Where Web 2.0 Meets Web 3.0.

[20]  George Karypis,et al.  Soft clustering criterion functions for partitional document clustering: a summary of results , 2004, CIKM '04.

[21]  Olfa Nasraoui,et al.  Semantic Information Retrieval for Personalized E-Learning , 2008, 2008 20th IEEE International Conference on Tools with Artificial Intelligence.

[22]  H. Charles Romesburg,et al.  Cluster analysis for researchers , 1984 .

[23]  Charles H. Davis Information Storage and Retrieval. Robert R. Korfhage , 1999 .

[24]  Amit P. Sheth,et al.  Managing Semantic Content for the Web , 2002, IEEE Internet Comput..

[25]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[26]  Alexander Pretschner,et al.  Ontology-based personalized search and browsing , 2003, Web Intell. Agent Syst..

[27]  Vipin Kumar,et al.  Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.