Quasirelativistic study of 125Te nuclear magnetic shielding constants and chemical shifts

Calculations for 125Te magnetic shielding constants and chemical shifts were carried out using a quasirelativistic Hamiltonian including the spin‐free relativistic, one‐ and two‐electron spin–orbit, and relativistic magnetic interaction terms. For the tellurium‐containing series Te(CH3)2, TeH2, TeF6, Te(CH3)4, and Te(CH3)2Cl2, the relativistic effects amounted to as much as 1300 ppm and were very important for qualitatively reproducing the absolute value of the 125Te shielding constants obtained experimentally. On the other hand, for the 125Te chemical shifts the relativistic effects were less important, because they cancelled each other between the sample and reference compounds. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1502–1508, 2001

[1]  Colin Eaborn,et al.  Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology. New Series , 1971 .

[2]  Yosadara Ruiz-Morales,et al.  Calculation of125Te Chemical Shifts Using Gauge-Including Atomic Orbitals and Density Functional Theory , 1997 .

[3]  Daniel C. Harris,et al.  Isolation and characterization of tetramethyltellurium(IV) , 1989 .

[4]  Hiroshi Nakatsuji,et al.  Dirac–Fock calculations of the magnetic shielding constants of protons and heavy nuclei in XH2 (X=O, S, Se, and Te): a comparison with quasi-relativistic calculations , 2000 .

[5]  Hiroshi Nakatsuji,et al.  Relativistic study of nuclear magnetic shielding constants: tungsten hexahalides and tetraoxide , 1996 .

[6]  Hiroshi Nakatsuji,et al.  Basis set dependence of magnetic shielding constant calculated by the Hartree-Fock/finite perturbation method , 1996 .

[7]  A. Jameson,et al.  Concurrent 19F and 77Se or 19F and 125Te NMR T1 measurements for determination of 77Se and 125Te absolute shielding scales , 1987 .

[8]  H. C. E. McFarlane,et al.  Sulfur, Selenium, and Tellurium , 1987 .

[9]  Dennis R. Salahub,et al.  Scalar Relativistic Effects on 17O NMR Chemical Shifts in Transition-Metal Oxo Complexes. An ab Initio ECP/DFT Study , 1995 .

[10]  Pekka Pyykkö,et al.  On the relativistic theory of NMR chemical shifts , 1983 .

[11]  Ronald F. Ziolo,et al.  Experimental observation of the tellurium(IV) bonding and lone-pair density in dimethyltellurium dichloride by x-ray diffraction techniques , 1983 .

[12]  Kenneth Ruud,et al.  Second- and third-order spin-orbit contributions to nuclear shielding tensors , 1999 .

[13]  Pere Alemany,et al.  Density Functional Calculations of NMR Chemical Shifts with the Inclusion of Spin−Orbit Coupling in Tungsten and Lead Compounds , 1999 .

[14]  Trygve Helgaker,et al.  Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constants , 1999 .

[15]  Hiroshi Nakatsuji,et al.  Relativistic study of nuclear magnetic shielding constants: mercury dihalides , 1996 .

[16]  Hiroshi Nakatsuji,et al.  Spin—orbit effect on the magnetic shielding constant using the ab initio UHF method: silicon tetrahalides , 1995 .

[17]  H. Pfeifer,et al.  Nuclear Magnetic Shieldings and Molecular Structure , 1995 .

[18]  Herbert Malamud,et al.  Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology , 1985 .

[19]  Hiroshi Nakatsuji,et al.  Spin-orbit effect on the magnetic shielding constant using the ab initio UHF method. Electronic mechanism in the aluminum compounds, A1X4− (X = H, F, Cl, Br and I) , 1996 .

[20]  John F. Stanton,et al.  Perturbative treatment of triple excitations in coupled‐cluster calculations of nuclear magnetic shielding constants , 1996 .

[21]  Dennis R. Salahub,et al.  Calculations of NMR shielding constants by uncoupled density functional theory , 1993 .

[22]  Hideo Sekino,et al.  Can Quantum Chemistry Provide Reliable Molecular Hyperpolarizabilities , 1996 .

[23]  Hess,et al.  Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. , 1985, Physical review. A, General physics.

[24]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[25]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[26]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[27]  Hiroshi Nakatsuji,et al.  SPIN-ORBIT EFFECT ON THE MAGNETIC SHIELDING CONSTANT USING THE AB INITIO UHF METHOD , 1995 .

[28]  Notker Rösch,et al.  A transparent interpretation of the relativistic contribution to the N.M.R. ‘heavy atom chemical shift’ , 1987 .

[29]  Shashi P. Karna,et al.  Nonlinear Optical Materials: Theory and Modeling , 1996 .

[30]  Kenneth Ruud,et al.  Quadratic response calculations of the electronic spin-orbit contribution to nuclear shielding tensors , 1998 .

[31]  Hiroshi Nakatsuji,et al.  Gauge‐invariant basis sets for magnetic property calculations , 1995 .

[32]  Isao Morishima,et al.  Effect of the heavy atom on the nuclear shielding constant. I. The proton chemical shifts in hydrogen halides , 1973 .

[33]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .

[34]  J. Tossell,et al.  Nuclear magnetic shieldings and molecular structure , 1993 .

[35]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[36]  Georg Schreckenbach,et al.  Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes , 1997 .

[37]  P. V. Schastnev,et al.  Effects of spin-orbital interactions on 13 NMR chemical shifts in halogen-substituted methanes , 1980 .

[38]  Dennis R. Salahub,et al.  Calculation of ligand NMR chemical shifts in transition-metal complexes using ab initio effective-core potentials and density functional theory , 1995 .

[39]  J. G. Snijders,et al.  EXACT SOLUTIONS OF REGULAR APPROXIMATE RELATIVISTIC WAVE EQUATIONS FOR HYDROGEN-LIKE ATOMS , 1994 .

[40]  Hiroshi Nakatsuji,et al.  Dirac–Fock calculations of magnetic shielding constants: hydrogen molecule and hydrogen halides , 1999 .

[41]  Tom Ziegler,et al.  Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling , 1998 .

[42]  Mariusz Klobukowski,et al.  Well-tempered Gaussian basis sets for the calculation of matrix Hartree-Fock wavefunctions , 1993 .

[43]  J. Drake,et al.  Synthesis and Characterization of N,N-Diethyl, Pyrrolidyl, and Piperidyl Monothiocarbamate Derivatives of Dimethyltellurium(IV). Crystal Structures of Me2Te[SCONEt2]2, Me2TeCl[SCONEt2], Me2TeBr[SCONEt2], and Me2TeI[SCONEt2] , 1994 .

[44]  J. Schwartz,et al.  Organometallics , 1987, Science.

[45]  Alexander J. Blake,et al.  STRUCTURE OF TETRAMETHYLTELLURIUM(IV) DETERMINED EXPERIMENTALLY IN THE SOLID AND GAS PHASES AND BY AB INITIO CALCULATIONS , 1994 .

[46]  Hiroshi Nakatsuji,et al.  Relativistic study of nuclear magnetic shielding constants: hydrogen halides , 1996 .

[47]  Hiroshi Nakatsuji,et al.  Spin-orbit effect on the magnetic shielding constant using the ab initio UHF method: gallium and indium tetrahalides , 1995 .

[48]  John F. Stanton,et al.  Gauge‐invariant calculation of nuclear magnetic shielding constants at the coupled–cluster singles and doubles level , 1995 .

[49]  Evert Jan Baerends,et al.  Density functional calculations of nuclear magnetic shieldings using the zeroth-order regular approximation (ZORA) for relativistic effects: ZORA nuclear magnetic resonance , 1999 .