Total Roman 2 -Reinforcement of Graphs

<jats:p>A total Roman <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mfenced open="{" close="}" separators="|"> <mrow> <mn>2</mn> </mrow> </mfenced> </math> </jats:inline-formula>-dominating function (TR2DF) on a graph <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <mi mathvariant="normal">Γ</mi> <mo>=</mo> <mfenced open="(" close=")" separators="|"> <mrow> <mi>V</mi> <mo>,</mo> <mi>E</mi> </mrow> </mfenced> </math> </jats:inline-formula> is a function <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4"> <mi>l</mi> <mo>:</mo> <mi>V</mi> <mo>⟶</mo> <mfenced open="{" close="}" separators="|"> <mrow> <mn>0,1,2</mn> </mrow> </mfenced> </math> </jats:inline-formula>, satisfying the conditions that (i) for every vertex <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5"> <mi>y</mi> <mo>∈</mo> <mi>V</mi> </math> </jats:inline-formula> with <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6"> <mi>l</mi> <mfenced open="(" close=")" separators="|"> <mrow> <mi>y</mi> </mrow> </mfenced> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>, either <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7"> <mi>y</mi> </math> </jats:inline-formula> is adjacent to a vertex labeled 2 under <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8"> <mi>l</mi> </math> </jats:inline-formula>, or <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M9"> <mi>y</mi> </math> </jats:inline-formula> is adjacent to at least two vertices labeled 1; (ii) the subgraph induced by the set of vertices with positive weight has no isolated vertex. The weight of a TR2DF <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M10"> <mi>l</mi> </math> </jats:inline-formula> is the value <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M11"> <mstyle displaystyle="true"> <msub> <mrow> <mo stretchy="false">∑</mo> </mrow> <mrow> <mi>y</mi> <mo>∈</mo> <mi>V</mi> </mrow> </msub> <mrow> <mi>l</mi> <mfenced open="(" close=")" separators="|"> <mrow> <mi>y</mi> </mrow> </mfenced> </mrow> </mstyle> </math> </jats:inline-formula>. The total Roman <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M12"> <mfenced open="{" close="}" separators="|"> <mrow> <mn>2</mn> </mrow> </mfenced> </math> </jats:inline-formula>-domination number (TR2D-number) of a graph <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M13"> <mi mathvariant="normal">Γ</mi> </math> </jats:inline-formula> is the minimum weight of a TR2DF on <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M14"> <mi mathvariant="normal">Γ</mi> </math> </jats:inline-formula>. The total Roman <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M15"> <mfenced open="{" close="}" separators="|"> <mrow> <mn>2</mn> </mrow> </mfenced> </math> </jats:inline-formula>-reinforcement number (TR2R-number) of a graph is the minimum number of edges that have to be added to the graph in order to decrease the TR2D-number. In this manuscript, we study the properties of TR2R-number and we present some sharp upper bounds. In particular, we determine the exact value of TR2R-numbers of some classes of graphs.</jats:p>

[1]  Stephen T. Hedetniemi,et al.  Total domination in graphs , 1980, Networks.

[2]  Mustapha Chellali,et al.  Outer independent double Roman domination , 2020, Appl. Math. Comput..

[3]  Guoliang Hao,et al.  Italian Reinforcement Number in Graphs , 2019, IEEE Access.

[4]  Michael A. Henning,et al.  Italian domination in trees , 2017, Discret. Appl. Math..

[5]  Seyed Mahmoud Sheikholeslami,et al.  Total Roman Reinforcement in Graphs , 2019, Discuss. Math. Graph Theory.

[6]  Lutz Volkmann The Italian domatic number of a digraph , 2019 .

[7]  Juan Carlos Valenzuela Tripodoro,et al.  Total Roman {2}-Dominating Functions in Graphs , 2020, Discuss. Math. Graph Theory.

[9]  Tingting Xu,et al.  Bagging Approach for Italian Domination in $C_{n} \square\,P_{m}$ , 2019, IEEE Access.

[10]  Michael A. Henning,et al.  Perfect Italian domination in trees , 2019, Discret. Appl. Math..

[11]  N. Sridharan,et al.  Total Reinforcement Number of a Graph , 2020 .

[12]  Michael A. Henning,et al.  Graphs with Large Italian Domination Number , 2020, Bulletin of the Malaysian Mathematical Sciences Society.

[13]  Teresa W. Haynes,et al.  Roman {2}-domination , 2016, Discret. Appl. Math..

[14]  Noor A'lawiah Abd Aziz,et al.  On the outer-independent double Italian domination number , 2022, Electron. J. Graph Theory Appl..

[15]  Seyed Mahmoud Sheikholeslami,et al.  Varieties of Roman domination II , 2020, AKCE Int. J. Graphs Comb..

[16]  Mustapha Chellali,et al.  Independent Roman -domination in graphs , 2018, Discret. Appl. Math..