Generalized star configurations and the Tutte polynomial
暂无分享,去创建一个
[1] Ma Mario de Boer,et al. Gröbner Bases for Codes , 1999 .
[2] Stefan O. Tohaneanu. On the De Boer-Pellikaan method for computing minimum distance , 2010, J. Symb. Comput..
[3] David Eisenbud,et al. Linear Free Resolutions and Minimal Multiplicity , 1984 .
[4] Rodney Y. Sharp,et al. Steps in Commutative Algebra: Commutative rings and subrings , 2001 .
[5] Edgar Martínez Moro. Algebraic geometry modeling in information theory , 2013 .
[6] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[7] A. Geramita,et al. Star configurations in $\mathbb P^n$ , 2012, 1203.5685.
[8] P. Orlik,et al. Arrangements Of Hyperplanes , 1992 .
[9] D. Eisenbud. The Geometry of Syzygies: A Second Course in Commutative Algebra and Algebraic Geometry , 2004 .
[10] Iwan M. Duursma,et al. Combinatorics of the Two-Variable Zeta Function , 2003, International Conference on Finite Fields and Applications.
[11] Stefan O. Tohaneanu,et al. Minimum distance of linear codes and the α-invariant , 2015, Adv. Appl. Math..
[12] A. Ashikhmin. Generalized Hamming Weights for &-Linear Codes , 2015 .
[13] Stefan O. Tohaneanu,et al. Error-correction of linear codes via colon ideals , 2014, 1409.8387.
[14] G. R. Pellikaan,et al. Codes, arrangements and matroids , 2013 .
[15] A. Geramita,et al. Star configurations in Pn , 2013 .
[16] Andrew Berget,et al. Products of linear forms and Tutte polynomials , 2009, Eur. J. Comb..