High-durability organic electrochromic devices based on in-situ-photocurable electrochromic materials

[1]  Sheng Xu,et al.  A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display , 2022, Nature Electronics.

[2]  Sean Xiao‐An Zhang,et al.  Emerging Electrochromic Materials and Devices for Future Displays , 2022, Chemical reviews.

[3]  H. Moon,et al.  Tailoring Diffusion Dynamics in Energy Storage Ionic Conductors for High‐Performance, Multi‐Function, Single‐Layer Electrochromic Supercapacitors , 2022, Advanced Functional Materials.

[4]  Xiaoquan Lu,et al.  Recent Advances on Dual‐Band Electrochromic Materials and Devices , 2022, Advanced Functional Materials.

[5]  J. Bell,et al.  All-solid-state proton-based tandem structures for fast-switching electrochromic devices , 2022, Nature Electronics.

[6]  Sean Xiao‐An Zhang,et al.  Dynamic Metal–Ligand Interaction of Synergistic Polymers for Bistable See‐Through Electrochromic Devices , 2021, Advanced materials.

[7]  Zhenan Bao,et al.  High-frequency and intrinsically stretchable polymer diodes , 2021, Nature.

[8]  G. Sotzing,et al.  Electrochromic Fabric Displays from a Robust, Open‐Air Fabrication Technique , 2021, Advanced Materials & Technologies.

[9]  Weiran Zhang,et al.  A Strategy of Stabilization via Active Energy-Exchange for Bistable Electrochromic Displays , 2021, CCS Chemistry.

[10]  Cheol Hyun Cho,et al.  Black-to-transparent electrochromic capacitive windows based on conjugated polymers , 2021, Journal of Materials Chemistry A.

[11]  J. B. Tok,et al.  Monolithic optical microlithography of high-density elastic circuits , 2021, Science.

[12]  Yueyan Zhang,et al.  Novel electrochromic materials based on chalcogenoviologens for smart windows, E-price tag and flexible display with improved reversibility and stability , 2021 .

[13]  Michael D. McGehee,et al.  Polymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulation , 2021, Nature Energy.

[14]  Sean Xiao‐An Zhang,et al.  Stimuli-Induced Reversible Proton Transfer for Stimuli-Responsive Materials and Devices. , 2021, Accounts of chemical research.

[15]  P. Dyreklev,et al.  Flexible Active Matrix Addressed Displays Manufactured by Screen Printing , 2020, Advanced Engineering Materials.

[16]  Michael D. McGehee,et al.  Electrolyte for Improved Durability of Dynamic Windows Based on Reversible Metal Electrodeposition , 2020 .

[17]  G. Shen,et al.  Flexible on-chip micro-supercapacitors: Efficient power units for wearable electronics , 2020 .

[18]  J. Myoung,et al.  Rollable and transparent subpixelated electrochromic displays using deformable nanowire electrodes with improved electrochemical and mechanical stability , 2020 .

[19]  Yuchen Shi,et al.  Electrochromism and electrochromic devices of new extended viologen derivatives with various substituent benzene , 2020 .

[20]  Fengxia Geng,et al.  Fusing electrochromic technology with other advanced technologies: A new roadmap for future development , 2020 .

[21]  Debao Xiao,et al.  Easy-to-make sulfonatoalkyl viologen/sodium carboxymethylcellulose hydrogel-based electrochromic devices with high coloration efficiency, fast response and excellent cycling stability , 2020 .

[22]  Jian-jun Zhang,et al.  Review—In Situ Polymerization for Integration and Interfacial Protection Towards Solid State Lithium Batteries , 2020, Journal of The Electrochemical Society.

[23]  Se Hyun Kim,et al.  Voltage-Tunable Dual-Image of Electrostatic Force-Assisted Dispensing Printed, Tungsten Trioxide-based Electrochromic Devices with a Symmetric Configuration. , 2019, ACS applied materials & interfaces.

[24]  Weiran Zhang,et al.  A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer , 2019, Nature Materials.

[25]  Weiran Zhang,et al.  Bio-inspired ultra-high energy efficiency bistable electronic billboard and reader , 2019, Nature Communications.

[26]  Michael D. McGehee,et al.  Hybrid dynamic windows using reversible metal electrodeposition and ion insertion , 2019, Nature Energy.

[27]  J. Myoung,et al.  Flexible and Transparent Electrochromic Displays with Simultaneously Implementable Subpixelated Ion Gel‐Based Viologens by Multiple Patterning , 2019, Advanced Functional Materials.

[28]  C. Berlinguette,et al.  Photodeposited Amorphous Oxide Films for Electrochromic Windows , 2018 .

[29]  Shuji Tanaka,et al.  On-chip electrochromic micro display for a disposable bio-sensor chip , 2017 .

[30]  Soonmin Seo,et al.  Direct fabrication of electrochromic devices with complex patterns on three-dimensional substrates using polymeric stencil films , 2017 .

[31]  W. Skene,et al.  Visible-to-NIR Electrochromic Device Prepared from a Thermally Polymerizable Electroactive Organic Monomer. , 2017, ACS applied materials & interfaces.

[32]  Se Hyun Kim,et al.  Electrostatic-Force-Assisted Dispensing Printing of Electrochromic Gels for Low-Voltage Displays. , 2017, ACS applied materials & interfaces.

[33]  Jeonghun Kim,et al.  A Facile Approach for Constructing Conductive Polymer Patterns for Application in Electrochromic Devices and Flexible Microelectrodes. , 2016, ACS applied materials & interfaces.

[34]  Xuan Cao,et al.  Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors. , 2016, ACS nano.

[35]  R. Ruffo,et al.  State‐of‐the‐Art Neutral Tint Multichromophoric Polymers for High‐Contrast See‐Through Electrochromic Devices , 2016 .

[36]  J. Reynolds,et al.  Full Color Control and High‐Resolution Patterning from Inkjet Printable Cyan/Magenta/Yellow Colored‐to‐Colorless Electrochromic Polymer Inks , 2016 .

[37]  T. Lodge,et al.  Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels. , 2016, ACS applied materials & interfaces.

[38]  Kuo-Chuan Ho,et al.  Thermally Cured Dual Functional Viologen-Based All-in-One Electrochromic Devices with Panchromatic Modulation. , 2016, ACS applied materials & interfaces.

[39]  A. Alec Talin,et al.  High-contrast and fast electrochromic switching enabled by plasmonics , 2016, Nature Communications.

[40]  Guofa Cai,et al.  Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes. , 2016, Nanoscale.

[41]  Jongbeom Na,et al.  Energy saving electrochromic windows from bistable low-HOMO level conjugated polymers , 2016 .

[42]  K. Ho,et al.  Printed Multicolor High-Contrast Electrochromic Devices. , 2015, ACS applied materials & interfaces.

[43]  Rui-Tao Wen,et al.  Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films , 2015, Nature materials.

[44]  T. Mustonen,et al.  High Performance and Long-Term Stability in Ambiently Fabricated Segmented Solid-State Polymer Electrochromic Displays. , 2015, ACS applied materials & interfaces.

[45]  F. Krebs,et al.  Development and Manufacture of Polymer‐Based Electrochromic Devices , 2015 .

[46]  Timothy P. Lodge,et al.  Solution Processable, Electrochromic Ion Gels for Sub-1 V, Flexible Displays on Plastic , 2015 .

[47]  Egbert Oesterschulze,et al.  Integrated electrochromic iris device for low power and space-limited applications , 2014 .

[48]  F. Krebs,et al.  Direct Photopatterning of Electrochromic Polymers , 2013 .

[49]  Eunkyoung Kim,et al.  Solution Processable and Patternable Poly(3,4‐alkylenedioxythiophene)s for Large‐Area Electrochromic Films , 2011, Advanced materials.

[50]  J. Reynolds,et al.  Color control in pi-conjugated organic polymers for use in electrochromic devices. , 2010, Chemical reviews.

[51]  J. Reynolds,et al.  The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. , 2008, Nature materials.

[52]  K. Abboud,et al.  Discrete photopatternable pi-conjugated oligomers for electrochromic devices. , 2008, Journal of the American Chemical Society.

[53]  M. Berggren,et al.  Printable All‐Organic Electrochromic Active‐Matrix Displays , 2007 .

[54]  S. Holdcroft,et al.  Direct Thermal Patterning of a π-Conjugated Polymer , 2007 .

[55]  L. Walder,et al.  Switchable Electrochromic Images Based on a Combined Top–Down Bottom–Up Approach , 2004 .

[56]  R. Liska,et al.  Toughening of photo-curable polymer networks: a review , 2016 .