Hybrid RF & FSO for Defense and 5G Backhaul

Both defense and commercial 5G networks require ultra-broadband capacity and low latency for new applications. This paper is a collaborative development between Raytheon and NxGen Partners to develop a low cost and high bandwidth backhaul application for both defense and telecom industries. The Raytheon technology uses a Free- Space Optical (FSO) Fabry-Perot Etalon receiver that eliminates the need for adaptive optics, coupling into Single Mode (SM) fiber and synchronized local timing. The NxGen technology uses multiple Orbital Angular Momentum (OAM) modes to (i) mux and de-mux orthogonal and independent optical channels, and (ii) create isolations in an RF Full Duplex backhaul.

[1]  Moshe Tur,et al.  Localization from the unique intensity gradient of an orbital-angular-momentum beam. , 2017, Optics letters.

[2]  Andreas F. Molisch,et al.  32-Gbit/s 60-GHz millimeter-wave wireless communication using orbital angular momentum and polarization multiplexing , 2016, 2016 IEEE International Conference on Communications (ICC).

[3]  Yinwen Cao,et al.  Atmospheric turbulence mitigation in an OAM-based MIMO free-space optical link using spatial diversity combined with MIMO equalization. , 2016, Optics letters.

[4]  A. Willner,et al.  Multipath Effects in Millimetre-Wave Wireless Communication using Orbital Angular Momentum Multiplexing , 2016, Scientific Reports.

[5]  Rashaunda Henderson,et al.  Physical phaseplate for the generation of a millimeter-wave hermite-Gaussian beam , 2016, 2016 IEEE Radio and Wireless Symposium (RWS).

[6]  A. Willner,et al.  Spatial light structuring using a combination of multiple orthogonal orbital angular momentum beams with complex coefficients. , 2017, Optics letters.

[7]  Robert R. Alfano,et al.  Vortex beams and optical activity of sucrose , 2017, OPTO.

[8]  Yan Yan,et al.  Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Yan Yan,et al.  Performance enhancement of an orbital-angular-momentum-based free-space optical communication link through beam divergence controlling , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[10]  Andreas F. Molisch,et al.  Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams , 2014, 2014 IEEE Globecom Workshops (GC Wkshps).

[11]  Yinwen Cao,et al.  Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing. , 2015, Optics letters.

[12]  Yinwen Cao,et al.  4 Gbit/s underwater optical transmission using OAM multiplexing and directly modulated green laser , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[13]  Giuseppe Caire,et al.  Experimental demonstration of 16 Gbit/s millimeter-wave communications using MIMO processing of 2 OAM modes on each of two transmitter/receiver antenna apertures , 2014, 2014 IEEE Global Communications Conference.

[14]  Moshe Tur,et al.  Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices. , 2016, Optics letters.

[15]  Moshe Tur,et al.  Orbital-angular-momentum-multiplexed free-space optical communication link using transmitter lenses. , 2016, Applied optics.

[16]  A. Willner,et al.  Performance metrics and design considerations for a free-space optical orbital-angular-momentum–multiplexed communication link , 2015 .

[17]  Andreas F. Molisch,et al.  OFDM over mm-Wave OAM Channels in a Multipath Environment with Intersymbol Interference , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[18]  Moshe Tur,et al.  Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m. , 2016, Optics letters.

[19]  Demonstration of distance emulation for an orbital-angular-momentum beam , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[20]  Yan Yan,et al.  400-Gbit/s free-space optical communications link over 120-meter using multiplexing of 4 collocated orbital-angular-momentum beams , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[21]  Robert R Alfano,et al.  Hybrid generation and analysis of vector vortex beams. , 2017, Applied optics.

[22]  Yinwen Cao,et al.  Demonstration of OAM-based MIMO FSO link using spatial diversity and MIMO equalization for turbulence mitigation , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[23]  Rashaunda Henderson,et al.  Patch Antenna Array for the Generation of Millimeter-Wave Hermite–Gaussian Beams , 2016, IEEE Antennas and Wireless Propagation Letters.

[24]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[25]  Moshe Tur,et al.  Experimental demonstration of a 400-Gbit/s free space optical link using multiple orbital-angular-momentum beams with higher order radial indices , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[26]  Moshe Tur,et al.  Power loss mitigation of orbital-angular-momentum-multiplexed free-space optical links using nonzero radial index Laguerre-Gaussian beams , 2017 .

[27]  K. O. Kenneth,et al.  Design, fabrication, and demonstration of a dielectric vortex waveguide in the sub-terahertz region. , 2017, Applied optics.

[28]  J. P. Woerdman,et al.  Astigmatic laser mode converters and transfer of orbital angular momentum , 1993 .

[29]  Andreas F. Molisch,et al.  Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array , 2016, Scientific Reports.

[30]  Johannes Courtial,et al.  Refractive elements for the measurement of the orbital angular momentum of a single photon. , 2012, Optics express.