Graph limits of random unlabelled k-trees

We study random unlabelled $k$-dimensional trees by combining the colouring approach by Gainer-Dewar and Gessel (2014) with the cycle pointing method by Bodirsky, Fusy, Kang and Vigerske (2011). Our main applications are Gromov-Hausdorff-Prokhorov and Benjamini-Schramm limits, that describe their asymptotic geometric shape on a global and local scale as the number of hedra tends to infinity.

[1]  G. Pólya Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen , 1937 .

[2]  Donald L. Iglehart,et al.  Functionals of Brownian meander and Brownian excursion , 1977 .

[3]  Frank Harary,et al.  Graphical enumeration , 1973 .

[4]  Benedikt Stufler,et al.  The continuum random tree is the scaling limit of unlabeled unrooted trees , 2014, Random Struct. Algorithms.

[5]  Andrew Gainer-Dewar,et al.  Γ-Species and the Enumeration of k-Trees , 2012, Electron. J. Comb..

[6]  Benedikt Stufler Limits of random tree-like discrete structures , 2016, Probability Surveys.

[7]  Gr'egory Miermont,et al.  Tessellations of random maps of arbitrary genus , 2007, 0712.3688.

[8]  D. Aldous Stochastic Analysis: The Continuum random tree II: an overview , 1991 .

[9]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[10]  Michael Drmota,et al.  An Asymptotic Analysis of Labeled and Unlabeled k-Trees , 2016, Algorithmica.

[11]  Stanley Burris,et al.  Counting Rooted Trees: The Universal Law t(n)~C ρ-n n-3/2 , 2006, Electron. J. Comb..

[12]  Benedikt Stufler,et al.  Unlabelled Gibbs partitions , 2016, Combinatorics, Probability and Computing.

[13]  R. Otter The Number of Trees , 1948 .

[14]  Dominique Foata,et al.  Enumerating k-trees , 1971, Discret. Math..

[15]  Benedikt Stufler,et al.  Gibbs partitions: The convergent case , 2016, Random Struct. Algorithms.

[16]  Gilbert Labelle,et al.  The Specification of 2-trees , 2002, Adv. Appl. Math..

[17]  Emma Yu Jin,et al.  Graph limits of random graphs from a subset of connected k‐trees , 2016, Random Struct. Algorithms.

[18]  F. Harary,et al.  On acyclic simplicial complexes , 1968 .

[19]  Benedikt Stufler Scaling limits of random outerplanar maps with independent link-weights , 2015 .

[20]  Manuel Bodirsky,et al.  Boltzmann Samplers, Pólya Theory, and Cycle Pointing , 2010, SIAM J. Comput..

[21]  J. Moon The number of labeled k-trees , 1969 .

[22]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[23]  J. Bell,et al.  Counting Rooted Trees: The Universal Law $t(n)\,\sim\,C \rho^{-n} n^{-3/2}$ , 2006 .

[24]  Alexis Darrasse,et al.  Limiting Distribution for Distances in k-Trees , 2009, IWOCA.

[25]  Alexander Iriza Enumeration and Random Generation of Unlabeled Classes of Graphs: A Practical Study of Cycle Pointing and the Dissymmetry Theorem , 2015, ArXiv.

[26]  Benedikt Stufler,et al.  Asymptotic Properties of Random Unlabelled Block-Weighted Graphs , 2017, Electron. J. Comb..

[27]  Benedikt Stufler Random Enriched Trees with Applications to Random Graphs , 2018, Electron. J. Comb..

[28]  Ira M. Gessel,et al.  Counting unlabeled k-trees , 2013, J. Comb. Theory, Ser. A.

[29]  Lowell W. Beineke,et al.  The number of labeled k-dimensional trees , 1969 .

[30]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .