Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes.

The application of nanostructured indium-doped tin oxide (ITO) electrodes as diffraction gratings for light absorption enhancement in colloidal quantum dot solar cells is numerically investigated using finite-difference time-domain (FDTD) simulation. Resonant coupling of the incident diffracted light with supported waveguide modes in light absorbing layer at particular wavelengths predicted by grating far-field projection analysis is shown to provide superior near-infrared light trapping for nanostructured devices as compared to the planar structure. Among various technologically feasible nanostructures, the two-dimensional nano-branch array is demonstrated as the most promising polarization-independent structure and proved to be able to maintain its performance despite structural imperfections common in fabrication.

[1]  Edward H. Sargent Colloidal quantum dot solar cells , 2012 .

[2]  M. Brett,et al.  Directed branch growth in aligned nanowire arrays. , 2014, Nano letters.

[3]  T. Gaylord,et al.  Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings. , 1986, Applied optics.

[4]  Oleksandr Voznyy,et al.  Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime , 2014, Nature Communications.

[5]  Edward H. Sargent,et al.  Tandem colloidal quantum dot solar cells employing a graded recombination layer , 2011 .

[6]  Zongfu Yu,et al.  Dielectric nanostructures for broadband light trapping in organic solar cells , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[7]  Shanhui Fan,et al.  Light management for photovoltaics using high-index nanostructures. , 2014, Nature materials.

[8]  Y. Akimov,et al.  Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles? , 2010 .

[9]  Andrea Alù,et al.  Dual-interface gratings for broadband absorption enhancement in thin-film solar cells , 2012 .

[10]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[11]  Edward H. Sargent,et al.  Broadband solar absorption enhancement via periodic nanostructuring of electrodes , 2013, Scientific Reports.

[12]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[13]  Yi Cui,et al.  Plasmonic Dye‐Sensitized Solar Cells , 2014 .

[14]  Aram Amassian,et al.  Air-stable n-type colloidal quantum dot solids. , 2014, Nature materials.

[15]  M. Grätzel Dye-sensitized solar cells , 2003 .

[16]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[17]  R. Synowicki,et al.  Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants , 1998 .

[18]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.

[19]  M. Brett,et al.  Indium tin oxide nanowhisker morphology control by vapour–liquid–solid glancing angle deposition , 2012, Nanotechnology.

[20]  Absorption enhancement in solution processed metal-semiconductor nanocomposites. , 2011, Optics express.

[21]  A. K. Rath,et al.  Imprinted Electrodes for Enhanced Light Trapping in Solution Processed Solar Cells , 2014, Advanced materials.

[22]  P. Li,et al.  Flux Engineering for Indium Tin Oxide Nanotree Crystal Alignment and Height-Dependent Branch Orientation , 2013 .

[23]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[24]  Shanhui Fan,et al.  Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings , 2010 .

[25]  K. Catchpole,et al.  Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells. , 2012, Optics express.