Path planning on compact Lie groups using a homotopy method

Abstract In this paper, we address the issue of solving the motion planning problems (MPP for short) for a class of left-invariant control systems Σ whose state spaces are semisimple compact Lie groups. The sub-Riemannian metrics induced by the dynamics of Σ admit nontrivial abnormal extremals. This fact a priori represents an obstruction for the procedure we use to tackle the MPP, which consists of a homotopy (or continuation) method. We are however able to provide complete answers for the MPP.

[1]  Seok-Jin Kang,et al.  Lie Algebras and Their Representations , 1996 .

[2]  R. Montgomery A survey of singular curves in sub-Riemannian geometry , 1995 .

[3]  R. Strichartz Sub-Riemannian geometry , 1986 .

[4]  H. Sussmann,et al.  A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[5]  E. Lerman How fat is a fat bundle? , 1988 .

[6]  R. Carter Lie Groups , 1970, Nature.

[7]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[8]  V. Jurdjevic Geometric control theory , 1996 .

[9]  Héctor J. Sussmann,et al.  Line-Integral Estimates and Motion Planning Using the Continuation Method , 1998 .

[10]  Richard Montgomery,et al.  Singular extremals on Lie groups , 1994, Math. Control. Signals Syst..

[11]  T. Ważewski,et al.  Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes , 1948 .

[12]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[13]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[14]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[15]  Eugene L. Allgower,et al.  Continuation and path following , 1993, Acta Numerica.

[16]  H. Sussmann New Differential Geometric Methods in Nonholonomic Path Finding , 1992 .

[17]  Wensheng Liu,et al.  Shortest paths for sub-Riemannian metrics on rank-two distributions , 1996 .

[18]  James Wei,et al.  Lie Algebraic Solution of Linear Differential Equations , 1963 .