Path planning on compact Lie groups using a homotopy method
暂无分享,去创建一个
[1] Seok-Jin Kang,et al. Lie Algebras and Their Representations , 1996 .
[2] R. Montgomery. A survey of singular curves in sub-Riemannian geometry , 1995 .
[3] R. Strichartz. Sub-Riemannian geometry , 1986 .
[4] H. Sussmann,et al. A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[5] E. Lerman. How fat is a fat bundle? , 1988 .
[6] R. Carter. Lie Groups , 1970, Nature.
[7] M. L. Chambers. The Mathematical Theory of Optimal Processes , 1965 .
[8] V. Jurdjevic. Geometric control theory , 1996 .
[9] Héctor J. Sussmann,et al. Line-Integral Estimates and Motion Planning Using the Continuation Method , 1998 .
[10] Richard Montgomery,et al. Singular extremals on Lie groups , 1994, Math. Control. Signals Syst..
[11] T. Ważewski,et al. Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes , 1948 .
[12] J. Humphreys. Introduction to Lie Algebras and Representation Theory , 1973 .
[13] Eduardo D. Sontag,et al. Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .
[14] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[15] Eugene L. Allgower,et al. Continuation and path following , 1993, Acta Numerica.
[16] H. Sussmann. New Differential Geometric Methods in Nonholonomic Path Finding , 1992 .
[17] Wensheng Liu,et al. Shortest paths for sub-Riemannian metrics on rank-two distributions , 1996 .
[18] James Wei,et al. Lie Algebraic Solution of Linear Differential Equations , 1963 .