Development of a highly resolutive method, using a double quadruplex tetra-primer-ARMS-PCR coupled with capillary electrophoresis to study CD40LG polymorphisms.

[1]  M. Knip,et al.  Investigation of CTLA-4-318C/T gene polymorphism in cases with type 1 diabetes of Azerbaijan, Northwest Iran. , 2015, Immunology letters.

[2]  M. Honardoost,et al.  Tetra-Primer ARMS PCR Optimization for Detection of IVS-II-I (G-A) and FSC 8/9 InsG Mutations in β-Thalassemia Major Patients in Isfahan Population , 2015, Iranian journal of public health.

[3]  C. Aloui,et al.  Are polymorphisms of the immunoregulatory factor CD40LG implicated in acute transfusion reactions? , 2014, Scientific Reports.

[4]  M. Sebban,et al.  A Computerized Prediction Model of Hazardous Inflammatory Platelet Transfusion Outcomes , 2014, PloS one.

[5]  B. Pozzetto,et al.  Immune‐reactive soluble OX40 ligand, soluble CD40 ligand, and interleukin‐27 are simultaneously oversecreted in platelet components associated with acute transfusion reactions , 2014, Transfusion.

[6]  C. Oliveira,et al.  Guidelines for the Tetra-Primer ARMS–PCR Technique Development , 2014, Molecular Biotechnology.

[7]  F. Moazen,et al.  Polymerase chain reaction amplification of a GC rich region by adding 1,2 propanediol , 2014, Advanced biomedical research.

[8]  A. Yamniuk,et al.  An Anti‐CD154 Domain Antibody Prolongs Graft Survival and Induces Foxp3+ iTreg in the Absence and Presence of CTLA‐4 Ig , 2013, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[9]  David Tuck,et al.  Translating next generation sequencing to practice: Opportunities and necessary steps , 2013, Molecular oncology.

[10]  I. González-Álvaro,et al.  AB0021 Study of association of CD40-CD154 gene polymorphisms with disease susceptibility and cardiovascular risk in spanish rheumatoid arthritis patients , 2013 .

[11]  A. Alachkar,et al.  Betaine Significantly Improves Multiplex Tetra-Primer ARMS-PCR Methods , 2013, Molecular Biotechnology.

[12]  Javier Martín,et al.  Study of Association of CD40-CD154 Gene Polymorphisms with Disease Susceptibility and Cardiovascular Risk in Spanish Rheumatoid Arthritis Patients , 2012, PloS one.

[13]  S. Mahmood,et al.  Detection of common mutations in the GALT gene through ARMS. , 2012, Gene.

[14]  Anna E. Jeffreys,et al.  Candidate Human Genetic Polymorphisms and Severe Malaria in a Tanzanian Population , 2012, PloS one.

[15]  A. Alachkar,et al.  A quadruplex tetra-primer ARMS-PCR method for the simultaneous detection of TP53 Arg72Pro, IVS3 16bp Del/Ins and IVS6+62A>G, and NQO1 C609T polymorphisms. , 2012, Gene.

[16]  Javier Martín,et al.  Analysis of the association between CD40 and CD40 ligand polymorphisms and systemic sclerosis , 2012, Arthritis Research & Therapy.

[17]  V. Koksal,et al.  Development and validation of a cost-effective in-house method, tetra-primer ARMS PCR assay, in genotyping of seven clinically important point mutations. , 2011, Molecular and cellular probes.

[18]  A. Dorrance,et al.  Comparison of three microsatellite analysis methods for detecting genetic diversity in Phytophthora sojae (Stramenopila: Oomycete) , 2011, Biotechnology Letters.

[19]  Dawn N. Birdsell,et al.  Cost‐effective interrogation of single nucleotide polymorphisms using the mismatch amplification mutation assay and capillary electrophoresis , 2010, Electrophoresis.

[20]  C. Skibola,et al.  A functional TNFRSF5 gene variant is associated with risk of lymphoma. , 2008, Blood.

[21]  W. Holzgreve,et al.  A rapid and accurate approach to identify single nucleotide polymorphisms of mitochondrial DNA using MALDI-TOF mass spectrometry , 2008, Clinical chemistry and laboratory medicine.

[22]  C. Hoggart,et al.  Genome‐wide significance for dense SNP and resequencing data , 2008, Genetic epidemiology.

[23]  N. Blumberg,et al.  An association of soluble CD40 ligand (CD154) with adverse reactions to platelet transfusions , 2006, Transfusion.

[24]  A. Siegbahn,et al.  Soluble CD40L Levels Are Regulated by the −3459 A>G Polymorphism and Predict Myocardial Infarction and the Efficacy of Antithrombotic Treatment in Non-ST Elevation Acute Coronary Syndrome , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[25]  C. Langefeld,et al.  Variants of the CD40 gene but not of the CD40L gene are associated with coronary artery calcification in the Diabetes Heart Study (DHS). , 2006, American heart journal.

[26]  Y. Gruel,et al.  Improved PCR method for amplification of GC-rich DNA sequences , 2005, Molecular biotechnology.

[27]  M. Daly,et al.  Haplotype structure of TNFRSF5-TNFSF5 (CD40–CD40L) and association analysis in systemic lupus erythematosus , 2005, European Journal of Human Genetics.

[28]  M. Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[29]  Yusuke Nakamura,et al.  CD40 ligand gene and Kawasaki disease , 2004, European Journal of Human Genetics.

[30]  M. Hecker,et al.  CD154/CD40-Mediated Expression of CD154 in Endothelial Cells: Consequences for Endothelial Cell–Monocyte Interaction , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[31]  C. Rodríguez-Gallego,et al.  The dinucleotide repeat polymorphism in the 3′UTR of the CD154 gene has a functional role on protein expression and is associated with systemic lupus erythematosus , 2004, Annals of the rheumatic diseases.

[32]  Pardis C Sabeti,et al.  CD40L association with protection from severe malaria , 2002, Genes and Immunity.

[33]  J. Banchereau,et al.  CD40‐CD40 ligand , 2000, Journal of leukocyte biology.

[34]  A. Berno,et al.  High-throughput polymorphism screening and genotyping with high-density oligonucleotide arrays. , 1999, Genetic analysis : biomolecular engineering.

[35]  K. Livak,et al.  Allelic discrimination using fluorogenic probes and the 5' nuclease assay. , 1999, Genetic analysis : biomolecular engineering.

[36]  J. Zamorano,et al.  Requirement of a second signal via protein kinase C or protein kinase A for maximal expression of CD40 ligand. Involvement of transcriptional and posttranscriptional mechanisms , 1997, European journal of immunology.

[37]  W Henke,et al.  Betaine improves the PCR amplification of GC-rich DNA sequences. , 1997, Nucleic acids research.

[38]  G. Mutter,et al.  PCR bias in amplification of androgen receptor alleles, a trinucleotide repeat marker used in clonality studies. , 1995, Nucleic acids research.

[39]  M. Marino,et al.  Molecular size determinations of DNA restriction fragments and polymerase chain reaction products using capillary gel electrophoresis. , 1994, Journal of chromatography. A.

[40]  C Summers,et al.  Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). , 1989, Nucleic acids research.

[41]  T. K. Christopoulos,et al.  Identification of single-nucleotide polymorphisms by the oligonucleotide ligation reaction: a DNA biosensor for simultaneous visual detection of both alleles. , 2009, Analytical chemistry.

[42]  S. Hober,et al.  Pyrosequencing: history, biochemistry and future. , 2006, Clinica chimica acta; international journal of clinical chemistry.

[43]  A. Levine,et al.  Tissue‐specific expression of p53 in transgenic mice is regulated by intron sequences , 1991, Molecular carcinogenesis.

[44]  G. Alexandre,et al.  Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates , 2012, BMC Research Notes.