Maximum likelihood estimation of multinomial probit factor analysis models for multivariate t-distribution

We propose a model for multinomial probit factor analysis by assuming t-distribution error in probit factor analysis. To obtain maximum likelihood estimation, we use the Monte Carlo expectation maximization algorithm with its M-step greatly simplified under conditional maximization and its E-step made feasible by Monte Carlo simulation. Standard errors are calculated by using Louis’s method. The methodology is illustrated with numerical simulations.

[1]  Steven Stern,et al.  A Method for Smoothing Simulated Moments of Discrete Probabilities in Multinomial Probit Models , 1992 .

[2]  Xiao-Li Meng,et al.  Fitting Full-Information Item Factor Models and an Empirical Investigation of Bridge Sampling , 1996 .

[3]  C. McCulloch,et al.  A Monte Carlo EM method for estimating multinomial probit models , 2000 .

[4]  R. Little Robust Estimation of the Mean and Covariance Matrix from Data with Missing Values , 1988 .

[5]  H. Jeffreys,et al.  Theory of probability , 1896 .

[6]  Chuanhai Liu ML Estimation of the MultivariatetDistribution and the EM Algorithm , 1997 .

[7]  Peter E. Rossi,et al.  An exact likelihood analysis of the multinomial probit model , 1994 .

[8]  Geoffrey J. McLachlan,et al.  Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution , 2007, Comput. Stat. Data Anal..

[9]  Ying Nian Wu,et al.  Efficient Algorithms for Robust Estimation in Linear Mixed-Effects Models Using the Multivariate t Distribution , 2001 .

[10]  D. Wise,et al.  A CONDITIONAL PROBIT MODEL FOR QUALITATIVE CHOICE: DISCRETE DECISIONS RECOGNIZING INTERDEPENDENCE AND HETEROGENEOUS PREFERENCES' , 1978 .

[11]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .

[12]  Edward H. Ip,et al.  Stochastic EM: method and application , 1996 .

[13]  Geoffrey J. McLachlan,et al.  Robust Cluster Analysis via Mixtures of Multivariate t-Distributions , 1998, SSPR/SPR.

[14]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[15]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[16]  A. Kuk,et al.  MAXIMUM LIKELIHOOD ESTIMATION FOR PROBIT-LINEAR MIXED MODELS WITH CORRELATED RANDOM EFFECTS , 1997 .

[17]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[18]  C. McCulloch Maximum Likelihood Variance Components Estimation for Binary Data , 1994 .

[19]  C. Manski,et al.  On the Use of Simulated Frequencies to Approximate Choice Probabilities , 1981 .

[20]  J. Ashford,et al.  Multi-variate probit analysis. , 1970, Biometrics.

[21]  H. A. Luther,et al.  Applied numerical methods , 1969 .

[22]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  J. Zhao,et al.  Probabilistic PCA for t distributions , 2006, Neurocomputing.

[24]  Chuanhai Liu,et al.  Missing data imputation using the multivariate t distribution , 1995 .

[25]  David L. Woodruff,et al.  Robust estimation of multivariate location and shape , 1997 .

[26]  H. Hartley Maximum Likelihood Estimation from Incomplete Data , 1958 .

[27]  G. C. Wei,et al.  A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .

[28]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[29]  Xiao-Li Meng,et al.  Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .

[30]  D. Fraser,et al.  Inference and Linear Models. , 1981 .

[31]  Shy Shoham,et al.  Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions , 2002, Pattern Recognit..

[32]  Brajendra C. Sutradhar,et al.  Estimation of the parameters of a regression model with a multivariate t error variable , 1986 .

[33]  R. Wolke,et al.  Iteratively Reweighted Least Squares: Algorithms, Convergence Analysis, and Numerical Comparisons , 1988 .

[34]  Sik-Yum Lee,et al.  A MULTIVARIATE PROBIT LATENT VARIABLE MODEL FOR ANALYZING DICHOTOMOUS RESPONSES , 2005 .

[35]  Xinsheng Liu,et al.  The Monte Carlo EM method for estimating multinomial probit latent variable models , 2008, Comput. Stat..