Maximum likelihood estimation of multinomial probit factor analysis models for multivariate t-distribution
暂无分享,去创建一个
Jie Jiang | Xinsheng Liu | Keming Yu | Xinsheng Liu | Jie Jiang | K. Yu
[1] Steven Stern,et al. A Method for Smoothing Simulated Moments of Discrete Probabilities in Multinomial Probit Models , 1992 .
[2] Xiao-Li Meng,et al. Fitting Full-Information Item Factor Models and an Empirical Investigation of Bridge Sampling , 1996 .
[3] C. McCulloch,et al. A Monte Carlo EM method for estimating multinomial probit models , 2000 .
[4] R. Little. Robust Estimation of the Mean and Covariance Matrix from Data with Missing Values , 1988 .
[5] H. Jeffreys,et al. Theory of probability , 1896 .
[6] Chuanhai Liu. ML Estimation of the MultivariatetDistribution and the EM Algorithm , 1997 .
[7] Peter E. Rossi,et al. An exact likelihood analysis of the multinomial probit model , 1994 .
[8] Geoffrey J. McLachlan,et al. Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution , 2007, Comput. Stat. Data Anal..
[9] Ying Nian Wu,et al. Efficient Algorithms for Robust Estimation in Linear Mixed-Effects Models Using the Multivariate t Distribution , 2001 .
[10] D. Wise,et al. A CONDITIONAL PROBIT MODEL FOR QUALITATIVE CHOICE: DISCRETE DECISIONS RECOGNIZING INTERDEPENDENCE AND HETEROGENEOUS PREFERENCES' , 1978 .
[11] R. Maronna. Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .
[12] Edward H. Ip,et al. Stochastic EM: method and application , 1996 .
[13] Geoffrey J. McLachlan,et al. Robust Cluster Analysis via Mixtures of Multivariate t-Distributions , 1998, SSPR/SPR.
[14] D. McFadden. A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .
[15] S. Chib,et al. Bayesian analysis of binary and polychotomous response data , 1993 .
[16] A. Kuk,et al. MAXIMUM LIKELIHOOD ESTIMATION FOR PROBIT-LINEAR MIXED MODELS WITH CORRELATED RANDOM EFFECTS , 1997 .
[17] T. Louis. Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .
[18] C. McCulloch. Maximum Likelihood Variance Components Estimation for Binary Data , 1994 .
[19] C. Manski,et al. On the Use of Simulated Frequencies to Approximate Choice Probabilities , 1981 .
[20] J. Ashford,et al. Multi-variate probit analysis. , 1970, Biometrics.
[21] H. A. Luther,et al. Applied numerical methods , 1969 .
[22] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[23] J. Zhao,et al. Probabilistic PCA for t distributions , 2006, Neurocomputing.
[24] Chuanhai Liu,et al. Missing data imputation using the multivariate t distribution , 1995 .
[25] David L. Woodruff,et al. Robust estimation of multivariate location and shape , 1997 .
[26] H. Hartley. Maximum Likelihood Estimation from Incomplete Data , 1958 .
[27] G. C. Wei,et al. A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .
[28] Jeremy MG Taylor,et al. Robust Statistical Modeling Using the t Distribution , 1989 .
[29] Xiao-Li Meng,et al. Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .
[30] D. Fraser,et al. Inference and Linear Models. , 1981 .
[31] Shy Shoham,et al. Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions , 2002, Pattern Recognit..
[32] Brajendra C. Sutradhar,et al. Estimation of the parameters of a regression model with a multivariate t error variable , 1986 .
[33] R. Wolke,et al. Iteratively Reweighted Least Squares: Algorithms, Convergence Analysis, and Numerical Comparisons , 1988 .
[34] Sik-Yum Lee,et al. A MULTIVARIATE PROBIT LATENT VARIABLE MODEL FOR ANALYZING DICHOTOMOUS RESPONSES , 2005 .
[35] Xinsheng Liu,et al. The Monte Carlo EM method for estimating multinomial probit latent variable models , 2008, Comput. Stat..