Nucleation mechanism for the direct graphite-to-diamond phase transition.

[1]  Rustam Z. Khaliullin,et al.  Graphite-diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface , 2010 .

[2]  Thomas D. Kuhne,et al.  Ab initio quality neural-network potential for sodium , 2010, 1002.2879.

[3]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[4]  H. Ohfuji,et al.  Origin of unique microstructures in nano-polycrystalline diamond synthesized by direct conversion of graphite at static high pressure , 2009 .

[5]  F. Zerilli,et al.  Surface energy and the size of diamond crystals , 2008 .

[6]  E. Reed,et al.  Ultrafast transformation of graphite to diamond: an ab initio study of graphite under shock compression. , 2008, The Journal of chemical physics.

[7]  M. Heggie,et al.  Dislocations of Burgers vector c/2 in graphite , 2007 .

[8]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[9]  J. Rouzaud,et al.  Nanodiamond nucleation below 2273 K at 15 GPa from carbons with different structural organizations , 2007 .

[10]  H. Sumiya,et al.  Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation from graphite and non-graphitic carbon at high pressure and temperature , 2006 .

[11]  Ivano Tavernelli,et al.  Optimization of effective atom centered potentials for london dispersion forces in density functional theory. , 2004, Physical review letters.

[12]  R. Martoňák,et al.  Constant pressure reactive molecular dynamics simulations of phase transitions under pressure: The graphite to diamond conversion revisited , 2004 .

[13]  I. A. Petrusha,et al.  Diffusionless Nucleation of Lonsdaleite and Diamond in Hexagonal Graphite under Static Compression , 2004 .

[14]  H. Sumiya,et al.  Materials: Ultrahard polycrystalline diamond from graphite , 2003, Nature.

[15]  B. Moran,et al.  A model for nonclassical nucleation of solid-solid structural phase transformations , 2000 .

[16]  Tateyama,et al.  Constant-pressure first-principles studies on the transition states of the graphite-diamond transformation. , 1996, Physical review. B, Condensed matter.

[17]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[18]  H. Mao,et al.  The pressure-temperature phase and transformation diagram for carbon; updated through 1994 , 1996 .

[19]  E. Tosatti,et al.  Pressure-Induced Transformation Path of Graphite to Diamond. , 1995, Physical review letters.

[20]  Utsumi,et al.  High-pressure in situ x-ray-diffraction study of the phase transformation from graphite to hexagonal diamond at room temperature. , 1992, Physical review. B, Condensed matter.

[21]  W. Nellis,et al.  Shock-induced martensitic transformation of highly oriented graphite to diamond , 1992 .

[22]  W. Nellis,et al.  Shock-induced martensitic phase transformation of oriented graphite to diamond , 1991, Nature.

[23]  Cohen,et al.  Theoretical total-energy study of the transformation of graphite into hexagonal diamond. , 1987, Physical review. B, Condensed matter.

[24]  Cohen,et al.  Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond. , 1986, Physical review. B, Condensed matter.

[25]  Steven G. Louie,et al.  Total energies of diamond (111) surface reconstructions by a linear combination of atomic orbitals method , 1984 .

[26]  B. Deryagin,et al.  Phase transitions and nucleation in diamond and graphite , 1979 .

[27]  R. Bradley The effect of pressure on the rate of solid reactions, with special reference to diamond synthesis , 1971 .

[28]  F. P. Bundy,et al.  Hexagonal Diamond—A New Form of Carbon , 1967 .

[29]  F. Bundy,et al.  Direct Conversion of Graphite to Diamond in Static Pressure Apparatus. , 1962, Science.

[30]  F. Bundy,et al.  Diamond‐Graphite Equilibrium Line from Growth and Graphitization of Diamond , 1961 .

[31]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.