Timing and synchronization of low data rate ultra-wideband systems using data-aided auto-correlation method

For low data rate ultra-wideband (UWB) communication systems employing noncoherent detection and autocorrelation detection schemes, timing of integration region significantly affects their error rate performance. Time-of-arrival (TOA) estimation of the first channel tap is also the foundation of the UWB based ranging applications. In this thesis, a data-aided, autocorrelation based timing and synchronization method is developed. First, estimation of the optimal integration region, i.e., the initial point and the length of the integration, using the new timing method is presented. It is shown that the proposed method enhances the error rate performance compared to non-optimal integration region-determining methods. After that, TOA estimation using the proposed timing method is studied for the dual pulse (DP) signal structure. The performance improvement of this approach over the conventional energy detection based method is demonstrated via simulation.

[1]  Geert Leus,et al.  Signal model and receiver algorithms for a transmit-reference ultra-wideband communication system , 2006, IEEE Journal on Selected Areas in Communications.

[2]  G. Leus,et al.  A weighted autocorrelation receiver for transmitted reference ultra wideband communications , 2005, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005..

[3]  Georgios B. Giannakis,et al.  Ultra-wideband communications: an idea whose time has come , 2003, 2003 4th IEEE Workshop on Signal Processing Advances in Wireless Communications - SPAWC 2003 (IEEE Cat. No.03EX689).

[4]  G.B. Giannakis,et al.  Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks , 2005, IEEE Signal Processing Magazine.

[5]  Sudharman K. Jayaweera,et al.  Signal design for noncoherent PPM modulation with applications to UWB communications , 2005, IEEE Communications Letters.

[6]  A.A.M. Saleh,et al.  A Statistical Model for Indoor Multipath Propagation , 1987, IEEE J. Sel. Areas Commun..

[7]  Yue Wang Single carrier block transmission in ultra-wideband communications , 2006 .

[8]  Robert A. Scholtz,et al.  Ranging in a dense multipath environment using an UWB radio link , 2002, IEEE J. Sel. Areas Commun..

[9]  I. Guvenc,et al.  Threshold-based TOA estimation for impulse radio UWB systems , 2005, 2005 IEEE International Conference on Ultra-Wideband.

[10]  A. Rabbachin,et al.  Synchronization analysis for UWB systems with a low-complexity energy collection receiver , 2004, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812).

[11]  K. Witrisal,et al.  Transmitted-reference UWB systems using weighted autocorrelation receivers , 2006, IEEE Transactions on Microwave Theory and Techniques.

[12]  Xiaodai Dong,et al.  A new UWB dual pulse transmission and detection technique , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[13]  A. Molisch,et al.  IEEE 802.15.4a channel model-final report , 2004 .

[14]  John G. Proakis,et al.  Digital Communications , 1983 .

[15]  Moe Z. Win,et al.  Characterization of ultra-wide bandwidth wireless indoor channels: a communication-theoretic view , 2002, IEEE J. Sel. Areas Commun..

[16]  U. Mitra,et al.  Integration interval optimization and performance analysis for UWB transmitted reference systems , 2004, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812).

[17]  Ning He,et al.  Performance analysis of non-coherent UWB receivers at different synchronization levels , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[18]  Joon-Yong Lee ULTRA-WIDEBAND RANGING IN DENSE MULTIPATH ENVIRONMENTS , 2002 .

[19]  J. Hancock,et al.  A Transmitted Reference System for Communication in Random of Unknown Channels , 1965 .

[20]  Robert A. Scholtz,et al.  Ultra-wideband transmitted reference systems , 2005, IEEE Transactions on Vehicular Technology.

[21]  Georgios B. Giannakis,et al.  A GLRT approach to data-aided timing acquisition in UWB radios-Part I: algorithms , 2005, IEEE Transactions on Wireless Communications.

[22]  Liuqing Yang,et al.  Timing ultra-wideband signals with dirty templates , 2005, IEEE Transactions on Communications.

[23]  Moe Z. Win,et al.  Impulse radio: how it works , 1998, IEEE Communications Letters.

[24]  Wayne E. Stark,et al.  Performance of ultra-wideband communications with suboptimal receivers in multipath channels , 2002, IEEE J. Sel. Areas Commun..

[25]  W. Hirt,et al.  Robust noncoherent receiver exploiting UWB channel properties , 2004, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812).

[26]  Umberto Mengali,et al.  Channel estimation for ultra-wideband communications , 2002, IEEE J. Sel. Areas Commun..

[27]  R. Hoctor,et al.  Delay-hopped transmitted-reference RF communications , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[28]  Craig K. Rushforth Transmitted-reference techniques for random or unknown channels , 1964, IEEE Trans. Inf. Theory.

[29]  U. Spagnolini,et al.  A ranging technique for UWB indoor channel based on power delay profile analysis , 2004, 2004 IEEE 59th Vehicular Technology Conference. VTC 2004-Spring (IEEE Cat. No.04CH37514).

[30]  H. Vincent Poor,et al.  Ultra-wideband impulse radio systems with multiple pulse types , 2005, IEEE Journal on Selected Areas in Communications.

[31]  F. Tufvesson,et al.  Ultra-wideband communication using hybrid matched filter correlation receivers , 2004, 2004 IEEE 59th Vehicular Technology Conference. VTC 2004-Spring (IEEE Cat. No.04CH37514).

[32]  Ning He,et al.  Adaptive synchronization for non-coherent UWB receivers , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[33]  I. Guvenc,et al.  TOA estimation for IR-UWB systems with different transceiver types , 2006, IEEE Transactions on Microwave Theory and Techniques.

[34]  Liuqing Yang,et al.  Optimal pilot waveform assisted modulation for ultrawideband communications , 2004, IEEE Transactions on Wireless Communications.

[35]  R. Michael Buehrer,et al.  Two-stage acquisition for UWB in dense multipath , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[36]  Fredrik Tufvesson,et al.  Ultra-Wideband Communications using Hybrid Matched Filter Correlation Receivers , 2006, IEEE Transactions on Wireless Communications.

[37]  Terence W. Barrett,et al.  History of UltraWideBand (UWB) Radar & Communications: Pioneers and Innovators , 2000 .

[38]  Moe Z. Win,et al.  Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications , 2000, IEEE Trans. Commun..

[39]  Honggang Zhang,et al.  Home entertainment network: combination of IEEE 1394 and ultra wideband solutions , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[40]  Desmond P. Taylor,et al.  A Statistical Model for Indoor Multipath Propagation , 2007 .

[41]  T. Aaron Gulliver,et al.  Pulse position amplitude modulation for time-hopping multiple access UWB communications , 2004, WCNC.