Self-organized combinatorial optimization

In this paper, we present a self-organized computing approach to solving hard combinatorial optimization problems, e.g., the traveling salesman problem (TSP). First of all, we provide an analytical characterization of such an approach, by means of formulating combinatorial optimization problems into autonomous multi-entity systems and thereafter examining the microscopic characteristics of optimal solutions with respect to discrete state variables and local fitness functions. Next, we analyze the complexity of searching in the solution space based on the representation of fitness network and the observation of phase transition. In the second part of the paper, following the analytical characterization, we describe a decentralized, self-organized algorithm for solving combinatorial optimization problems. The validation results obtained by testing on a set of benchmark TSP instances have demonstrated the effectiveness and efficiency of the proposed algorithm. The link established between the microscopic characterization of hard computational systems and the design of self-organized computing methods provides a new way of studying and tackling hard combinatorial optimization problems.

[1]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[2]  Pedro Larrañaga,et al.  Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators , 1999, Artificial Intelligence Review.

[3]  A. Percus,et al.  Nature's Way of Optimizing , 1999, Artif. Intell..

[4]  Bak,et al.  Punctuated equilibrium and criticality in a simple model of evolution. , 1993, Physical review letters.

[5]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[6]  Walter Kern,et al.  On the Depth of Combinatorial Optimization Problems , 1993, Discret. Appl. Math..

[7]  Yuan Yan Tang,et al.  Multi-agent oriented constraint satisfaction , 2002, Artif. Intell..

[8]  Wim Hordijk,et al.  A Measure of Landscapes , 1996, Evolutionary Computation.

[9]  Assaf Naor,et al.  Rigorous location of phase transitions in hard optimization problems , 2005, Nature.

[10]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[11]  Rémi Monasson,et al.  Statistical mechanics methods and phase transitions in optimization problems , 2001, Theor. Comput. Sci..

[12]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[13]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[14]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[15]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[16]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[17]  Yu-Wang Chen,et al.  Gene Optimization: Computational Intelligence from the Natures and Micro-mechanisms of Hard Computational Systems , 2007, LSMS.

[18]  Alan F. Murray,et al.  IEEE International Conference on Neural Networks , 1997 .

[19]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[20]  G. Theraulaz,et al.  Inspiration for optimization from social insect behaviour , 2000, Nature.

[21]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[22]  Christian M. Reidys,et al.  Combinatorial Landscapes , 2002, SIAM Rev..

[23]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[24]  Stefan Boettcher,et al.  Optimization with Extremal Dynamics , 2000, Complex..

[25]  Kim Sneppen,et al.  Extremal dynamics and punctuated co-evolution , 1995 .

[26]  Jiming Liu,et al.  Toward nature-inspired computing , 2006, CACM.

[27]  E. Weinberger NP Completeness of Kauffman's N-k Model, A Tuneable Rugged Fitness Landscape , 1996 .

[28]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[29]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[30]  Han Jing,et al.  EMERGENCE FROM LOCAL EVALUATION FUNCTION , 2003 .

[31]  Toby Walsh,et al.  The TSP Phase Transition , 1996, Artif. Intell..

[32]  Jiming Liu,et al.  An Autonomy Oriented Computing (AOC) Approach to Distributed Network Community Mining , 2007, First International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007).

[33]  Han Jing Local Evaluation Functions and Global Evaluation Functions for Computational Evolution , 2003 .

[34]  A. Middleton,et al.  Improved extremal optimization for the Ising spin glass. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Peter Merz,et al.  Advanced Fitness Landscape Analysis and the Performance of Memetic Algorithms , 2004, Evolutionary Computation.

[36]  Yuan Yan Tang,et al.  An evolutionary autonomous agents approach to image feature extraction , 1997, IEEE Trans. Evol. Comput..

[37]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[38]  S Forrest,et al.  Genetic algorithms , 1996, CSUR.

[39]  Jean-Yves Potvin,et al.  Genetic Algorithms for the Traveling Salesman Problem , 2005 .

[40]  Yong Chen,et al.  Optimized annealing of traveling salesman problem from the nth-nearest-neighbor distribution , 2006, cond-mat/0603237.

[41]  Weixiong Zhang,et al.  Phase Transitions and Backbones of the Asymmetric Traveling Salesman Problem , 2011, J. Artif. Intell. Res..

[42]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[43]  Peng Chen,et al.  Optimization with extremal dynamics for the traveling salesman problem , 2007 .

[44]  Eric Goles Ch.,et al.  Sandpile models and lattices: a comprehensive survey , 2004, Theor. Comput. Sci..

[45]  A. Arenas,et al.  Community detection in complex networks using extremal optimization. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Xiaolong Jin,et al.  Autonomy Oriented Computing: From Problem Solving to Complex Systems Modeling (Multiagent Systems, Artificial Societies, and Simulated Organizations) , 2004 .

[47]  Stefan Boettcher Extremal Optimization: Heuristics Via Co-Evolutionary Avalanches , 2000, Comput. Sci. Eng..