Performance of perturbation methods on orbit prediction

In this paper we analyze briefly the use of two classical perturbation methods vs. the formulation using cartesian coordinates in the numerical integration of satellite orbits. In particular, we compare with the variation-of-parameters (VOP) and Encke's methods. The numerical tests performed with a realistic Earth potential model and using a well-recognized numerical ODE integrator (dop853) permit us to establish the power of these alternative formulations on orbital problems, in spite of the affirmations of other researchers.

[1]  R. Broucke,et al.  On the equinoctial orbit elements , 1972 .

[2]  Toshio Fukushima,et al.  Long-Term Integration Error of Kustaanheimo-Stiefel Regularized Orbital Motion , 2000 .

[3]  Toshio Fukushima,et al.  Long-Term Integration Error of Kustaanheimo-Stiefel Regularized Orbital Motion , 2000 .

[4]  David Moore,et al.  On High Order MIRK Schemes and Hermite-Birkhoff Interpolants , 2006 .

[5]  Georgios Psihoyios,et al.  Trigonometrically-fitted symmetric multistep methods for the approximate solution of orbital problems , 2003 .

[6]  J. Dormand,et al.  High order embedded Runge-Kutta formulae , 1981 .

[7]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[8]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[9]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[10]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[11]  Roberto Barrio,et al.  Chebyshev collocation methods for fast orbit determination , 1999, Appl. Math. Comput..

[12]  J. Cash,et al.  Variable Step Runge-Kutta-Nystrom Methods for the Numerical Solution of Reversible Systems , 2006 .

[13]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[14]  G. Psihoyios,et al.  Efficient Numerical Solution of Orbital Problems with the use of Symmetric Four-step Trigonometrically-fitted Methods , 2004 .

[15]  Theodore E. Simos,et al.  ENCKE METHODS ADAPTED TO REGULARIZING VARIABLES , 2000 .

[16]  H. Stetter The defect correction principle and discretization methods , 1978 .

[17]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[18]  Roberto Barrio,et al.  Modifications of the method of variation of parameters , 2006, Comput. Math. Appl..

[19]  A. Milani,et al.  Integration error over very long time spans , 1987 .

[20]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[21]  W. I. Newman,et al.  The method of variation of constants and multiple time scales in orbital mechanics. , 2003, Chaos.

[22]  S. Dallas,et al.  A comparison of Cowell's method and a variation-of-parameters method for the computation of precision satellite orbits , 1971 .

[23]  Jeff Cash,et al.  Lobatto-Obrechkoff Formulae for 2nd Order Two-Point Boundary Value Problems , 2006 .

[24]  T. E. Simos,et al.  ON THE CONSTRUCTION OF EFFICIENT METHODS FOR SECOND ORDER IVPS WITH OSCILLATING SOLUTION , 2001 .