An ultra‐black silicon absorber

An ultra-black (A > 99%) broadband absorber concept on the basis of a needle-like silicon nanostructure called Black Silicon is proposed. The absorber comprises Black Silicon established by inductively coupled plasma reactive ion etching (ICP-RIE) on a highly doped, degenerated silicon substrate. Improved absorbers also incorporate an additional oxide capping layer on the nanostructures and reach an absorptance of A > 99.5% in the range of 350 to 2000 nm and A ∼ 99.8% between 1000 and 1250 nm. Fabrication of the absorbers is consistent with CMOS standards and requires no lithography. (Picture: Kasper, Friedrich-Schiller-University Jena)

[1]  Martin J T Milton,et al.  The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces , 2002 .

[2]  Shunichi Kodama,et al.  Ultra-black nickel-phosphorus alloy optical absorber , 1989, 6th IEEE Conference Record., Instrumentation and Measurement Technology Conference.

[3]  A. Vorobyev,et al.  Formation of solar absorber surface on nickel with femtosecond laser irradiation , 2012 .

[4]  Andreas Tünnermann,et al.  Improvement of Ge-on-Si photodiodes by black silicon light trapping , 2013 .

[5]  M. Schubert,et al.  Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition , 2013, IEEE Journal of Photovoltaics.

[6]  Martin Stutzmann,et al.  Black nonreflecting silicon surfaces for solar cells , 2006 .

[7]  Sailing He,et al.  Black silicon with controllable macropore array for enhanced photoelectrochemical performance , 2012 .

[8]  A. Fujishima,et al.  Photoelectrochemical Anticorrosion and Self-Cleaning Effects of a TiO2 Coating for Type 304 Stainless Steel , 2001 .

[9]  Haixia Zhang,et al.  Wideband anti-reflective micro/nano dual-scale structures: fabrication and optical properties , 2011 .

[10]  S M Smith,et al.  Specular reflectance of optical-black coatings in the far infrared. , 1984, Applied optics.

[11]  Martin Steglich,et al.  Core–shell heterojunction solar cells on silicon nanowire arrays , 2012 .

[12]  Remi Dussart,et al.  Silicon columnar microstructures induced by an SF6/O2 plasma , 2005 .

[13]  E. Mazur,et al.  MICROSTRUCTURING OF SILICON WITH FEMTOSECOND LASER PULSES , 1998 .

[14]  M. Green Silicon solar cells : advanced principles and practice , 1995 .

[15]  V. Saxena,et al.  Studies on ultra high solar absorber black electroless nickel coatings on aluminum alloys for space application , 2006 .

[16]  Jason D. Fowlkes,et al.  Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation , 1999 .

[17]  W. Southwell Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces , 1991 .

[18]  Lijie Ci,et al.  Experimental observation of an extremely dark material made by a low-density nanotube array. , 2008, Nano letters.

[19]  Jingtao Zhu,et al.  Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon , 2008 .

[20]  Yunjie Yan,et al.  Synthesis of Large‐Area Silicon Nanowire Arrays via Self‐Assembling Nanoelectrochemistry , 2002 .

[21]  K. L. Chopra,et al.  Low cost electroless nickel black coatings for photothermal conversion , 1980 .

[22]  Xue-wei Cao,et al.  Investigation of the structure and the physical properties of nickel-phosphorus ultra-black surfaces , 2008 .

[23]  Tarik Bourouina,et al.  On the optical and morphological properties of microstructured Black Silicon obtained by cryogenic-enhanced plasma reactive ion etching , 2013 .

[24]  Eric Mazur,et al.  Near-unity below-band-gap absorption by microstructured silicon , 2001 .

[25]  K. Amemiya,et al.  Comprehensive characterization of broadband ultralow reflectance of a porous nickel-phosphorus black surface by numerical simulation. , 2012, Applied optics.

[26]  George P. Eppeldauer,et al.  Gold-black coatings for freestanding pyroelectric detectors , 2003 .

[27]  Thomas Käsebier,et al.  Optical modeling of needle like silicon surfaces produced by an ICP-RIE process , 2010, Photonics Europe.

[28]  Xianfeng Zhang,et al.  Multiwalled carbon nanotubes for stray light suppression in space flight instruments , 2010, NanoScience + Engineering.

[29]  Miko Elwenspoek,et al.  The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control , 1995 .

[30]  Thomas Käsebier,et al.  Conformal Transparent Conducting Oxides on Black Silicon , 2010, Advanced materials.

[31]  Thomas Käsebier,et al.  Black silicon for solar cell applications , 2012, Photonics Europe.

[32]  P. Werner,et al.  Microscopic Si whiskers , 2011 .