Robust stabilization of nonlinear time delay systems: A complete type functionals approach

Abstract The robust stabilization of some classes of nonlinear delay systems with nominal linear delay system is addressed. The form of the controller is not an a priori proposal, but it is the result of a synthesis relying on the use of complete type Lyapunov–Krasovskii functionals, leading to distributed delay linear or nonlinear robust control laws. Simulation results of the stabilization of a chemical refining process demonstrate the good performance of the proposed approaches.

[1]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[2]  M. Jankovic,et al.  Stabilization of nonlinear time delay systems with delay-independent feedback , 2005, Proceedings of the 2005, American Control Conference, 2005..

[3]  Silviu-Iulian Niculescu,et al.  Survey on Recent Results in the Stability and Control of Time-Delay Systems* , 2003 .

[4]  Luc Baron,et al.  Design of Stabilizing Controllers With a Dynamic Gain for Feedforward Nonlinear Time-Delay Systems , 2011, IEEE Transactions on Automatic Control.

[5]  Ian R. Petersen,et al.  LMI approach to suboptimal guaranteed cost control for uncertain time-delay systems , 1998 .

[6]  A. Poznyak,et al.  Using the method of invariant ellipsoids for linear robust output stabilization of spacecraft , 2011 .

[7]  Yuanqing Xia,et al.  Robust sliding-mode control for uncertain time-delay systems: an LMI approach , 2003, IEEE Trans. Autom. Control..

[8]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[9]  H. Wu,et al.  Linear and nonlinear stabilizing continuous controllers of uncertain dynamical systems including state delay , 1996, IEEE Trans. Autom. Control..

[10]  O. Santos,et al.  Complete type Lyapunov-Krasovskii functionals with a given cross term in the time derivative , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[11]  Sabine Mondié,et al.  Linear quadratic suboptimal control for time delays systems , 2009, Int. J. Control.

[12]  Daniel I. Barnea A Method and New Results for Stability and Instability of Autonomous Functional Differential Equations , 1969 .

[13]  Wook Hyun Kwon,et al.  A simple receding horizon control for state delayed systems and its stability criterion , 2003 .

[14]  Gang Feng,et al.  Robust controller design of a class of nonlinear time delay systems via backstepping method , 2008, Autom..

[15]  Xiaogang Li,et al.  Delay-Dependent Robust Stabilization for Nonlinear Large Systems via Decentralized Fuzzy Control , 2011 .

[16]  Emilia Fridman,et al.  Stability of systems with uncertain delays: a new "Complete" Lyapunov-krasovskii functional , 2006, IEEE Transactions on Automatic Control.

[17]  V. Kharitonov,et al.  Lyapunov matrices for neutral type time delay systems , 2005, 2005 2nd International Conference on Electrical and Electronics Engineering.

[18]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[19]  James Lam,et al.  Stability and Stabilization of Delayed T--S Fuzzy Systems: A Delay Partitioning Approach , 2009, IEEE Transactions on Fuzzy Systems.

[20]  V. Kharitonov,et al.  NUMERICAL COMPUTATION OF TIME DELAY LYAPUNOV MATRICES , 2006 .

[21]  Sabine Mondié,et al.  Guaranteed cost control of linear systems with distributed delays: A complete type functionals approach , 2010 .

[23]  Vladimir L. Kharitonov,et al.  Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems , 2003, Autom..

[24]  A. Papachristodoulou,et al.  Robust Stabilization of Nonlinear Time Delay Systems Using Convex Optimization , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[25]  Vladimir L. Kharitonov,et al.  Time-Delay Systems , 2013 .

[26]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[27]  Pierdomenico Pepe,et al.  Input-to-State Stabilization of Stabilizable, Time-Delay, Control-Affine, Nonlinear Systems , 2009, IEEE Transactions on Automatic Control.

[28]  D. Ross Controller design for time lag systems via a quadratic criterion , 1971 .

[29]  Mrdjan Jankovic,et al.  Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems , 2001, IEEE Trans. Autom. Control..