Exact distribution of the linear combination of p Gumbel random variables

The distribution of linear combinations of independent Gumbel random variables arises explicitly in many applied areas, including economics, electrical and electronic engineering, and hydrological sciences. However, the exact distribution has not been known in its most general form. In this paper, the exact distribution of the linear combination Z=α1 X 1+···+α p X p is derived when X j are independent Gumbel random variables. A computer program is provided for the associated percentile points.

[1]  D. G. Chapman Some two Sample Tests , 1950 .

[2]  P. Hitczenko A NOTE ON A DISTRIBUTION OF WEIGHTED SUMS OF I.I.D. RAYLEIGH RANDOM VARIABLES , 1998 .

[3]  S. Provost On sums of independent gamma eandom yariames , 1989 .

[4]  R. Davies The distribution of a linear combination of 2 random variables , 1980 .

[5]  P. Moschopoulos,et al.  The distribution of the sum of independent gamma random variables , 1985 .

[6]  Mir M. Ali,et al.  Distribution of linear combination of exponential variates , 1982 .

[7]  K. Helmes,et al.  A Convergence Theorem for Random Linear Combinations of Independent Normal Random Variables , 1979 .

[8]  T. G. Pham,et al.  Reliability of a standby system with beta-distributed component lives , 1994 .

[9]  R. Farebrother The Distribution of a Positive Linear Combination of X2 Random Variables , 1984 .

[10]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[11]  A. Dobson,et al.  Confidence intervals for weighted sums of Poisson parameters. , 1991, Statistics in medicine.

[12]  Saralees Nadarajah,et al.  Linear combination of Gumbel random variables , 2007 .

[13]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[14]  G. D. Lin,et al.  An inequality for the weighted sums of pairwise i.i.d. generalized Rayleigh random variables , 2001 .

[15]  N. Turkkan,et al.  Bayesian analysis of the difference of two proportions , 1993 .

[16]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[17]  Viktor Witkovský,et al.  Computing the Distribution of a Linear Combination of Inverted Gamma Variables , 2001, Kybernetika.

[18]  B. Kamgar-Parsi,et al.  Distribution and moments of the weighted sum of uniforms random variables, with applications in reducing monte carlo simulations , 1995 .

[19]  H. Loáiciga,et al.  Analysis of extreme hydrologic events with Gumbel distributions: marginal and additive cases , 1999 .

[20]  Yannis M. Ioannides Topologies of social interactions , 2006 .

[21]  R. Fisher THE FIDUCIAL ARGUMENT IN STATISTICAL INFERENCE , 1935 .

[22]  Jeanne Albert,et al.  Sums of Uniformly Distributed Variables: A Combinatorial Approach , 2002 .

[23]  Edward W. Knightly,et al.  Scalable Services via Egress Admission Control , 2001, IEEE Trans. Multim..

[24]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[25]  Samuel Kotz,et al.  The Linear Combination of Logistic and Gumbel Random Variables , 2006, Fundam. Informaticae.