The Green Edge cruise: investigating the marginal ice zone processes during late spring and early summer to understand the fate of the Arctic phytoplankton bloom

Abstract. The Green Edge project was designed to investigate the onset, life, and fate of a phytoplankton spring bloom (PSB) in the Arctic Ocean. The lengthening of the ice-free period and the warming of seawater, amongst other factors, have induced major changes in Arctic Ocean biology over the last decades. Because the PSB is at the base of the Arctic Ocean food chain, it is crucial to understand how changes in the Arctic environment will affect it. Green Edge was a large multidisciplinary, collaborative project bringing researchers and technicians from 28 different institutions in seven countries together, aiming at understanding these changes and their impacts on the future. The fieldwork for the Green Edge project took place over two years (2015 and 2016) and was carried out from both an ice camp and a research vessel in Baffin Bay, in the Canadian Arctic. This paper describes the sampling strategy and the dataset obtained from the research cruise, which took place aboard the Canadian Coast Guard ship (CCGS) Amundsen in late spring and early summer 2016. The sampling strategy was designed around the repetitive, perpendicular crossing of the marginal ice zone (MIZ), using not only ship-based station discrete sampling but also high-resolution measurements from autonomous platforms (Gliders, BGC-Argo floats …) and under-way monitoring systems. The dataset is available at https://doi.org/10.17882/86417 (Bruyant et al., 2022).

A. Leynaert | B. Quéguiner | N. Garcia | P. Archambault | P. Raimbault | H. Claustre | E. Rehm | D. Vaulot | M. Picheral | A. Sciandra | Céline Dimier | A. Bricaud | P. Massicotte | I. Eulaers | J. Fort | M. Tragin | A. Lopes dos Santos | F. Bruyant | C. Schmechtig | J. Ras | B. Saint-Béat | C. Gombault | L. Miller | P. Grondin | A. Mosbech | S. Bélanger | J. Dinasquet | I. Obernosterer | Catherine Gérikas Ribeiro | J. Sansoulet | G. Bécu | M. Babin | Marie-Hélène Forget | K. Lewis | C. Goyens | K. Leblanc | C. Nozais | L. Fortier | R. Sempéré | F. Joux | J. Rontani | D. Kieber | E. Leymarie | Marine Cusa | A. Mucci | M. Galí | B. Else | D. Dumont | C. Panagiotopoulos | J. Tremblay | G. Massé | Rémi Amiraux | J. Ferland | C. Marec | G. Yunda-Guarin | F. Le Gall | M. Parenteau | P. Lajeunesse | C. Lalande | N. Morata | Mathieu Leblanc | P. Coupel | É. Brouard | H. Joy‐Warren | A. Lafond | B. Moriceau | J. Legras | Gabriel Joyal | A. Trottier | José Lagunas | C. Grant | M. Lizotte | S. Morisset | Rachel Hussherr | A. Vladoiu | P. Gourvil | L. Artigue | C. Sévigny | M. Gallinari | P. Guillot | M. Davelaar | J. Toullec | T. Burgers | Svend-Erik Garbus | Philippe‐Israël Morin | Jade Larivière | Véronique Cornet‐Barthaux | Atsushi Matsuoka | Lei Xue | Marie-Pier Amyot | Lucas Barbedo de Freitas | P. Bourgain | Camille Brunet | Danielle Caleb | Katrine Chalut | Fanny Cusset | Laeticia Dadaglio | Gabrièle Deslongchamps | Gabrielle Filteau | S. Hillion | Keith Lévesque | T. Linkowski | Dominique Marie | S. Mirshak | Gabrielle Nadaï | Thimoté Paire | N. Pelletier | Llúcia Ribot Lacosta | Noé Sardet | M. Forget | E. Brouard | Adriana Lopes dos Santos | A. Matsuoka | M. Amyot | C. Brunet | Augustin Lafond | Brivaëla Moriceau | C. Dimier | A. Sciandra

[1]  D. Roberts,et al.  The Ocean and Cryosphere in a Changing Climate , 2022 .

[2]  H. Heipieper,et al.  Viability and stress state of bacteria associated with primary production or zooplankton-derived suspended particulate matter in summer along a transect in Baffin Bay (Arctic Ocean). , 2021, The Science of the total environment.

[3]  L. Stemmann,et al.  Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export , 2021, Nature Communications.

[4]  E. Nöthig,et al.  Early snowmelt and sea ice breakup enhance algal export in the Beaufort Sea , 2021 .

[5]  F. D’Ortenzio,et al.  Preparing the New Phase of Argo: Technological Developments on Profiling Floats in the NAOS Project , 2020, Frontiers in Marine Science.

[6]  P. Archambault,et al.  Reliance of deep-sea benthic macrofauna on ice-derived organic matter highlighted by multiple trophic markers during spring in Baffin Bay, Canadian Arctic , 2020, Elementa: Science of the Anthropocene.

[7]  F. D’Ortenzio,et al.  Preparing the New Phase of Argo: Scientific Achievements of the NAOS Project , 2020, Frontiers in Marine Science.

[8]  L. Fortier,et al.  Seasonal and interannual variability of the Queen Maud Gulf ecosystem derived from sediment trap measurements , 2020, Limnology and Oceanography.

[9]  D. Vaulot,et al.  Taxonomic Reassignment of Pseudohaptolina Birgeri comb. nov. (Haptophyta) , 2020, bioRxiv.

[10]  A. Leynaert,et al.  Green Edge ice camp campaigns: understanding the processes controlling the under-ice Arctic phytoplankton spring bloom , 2019, Earth System Science Data.

[11]  E. Nöthig,et al.  Algal Export in the Arctic Ocean in Times of Global Warming , 2019, Geophysical Research Letters.

[12]  A. Mosbech,et al.  The co-distribution of Arctic cod and its seabird predators across the marginal ice zone in Baffin Bay , 2019, Elementa: Science of the Anthropocene.

[13]  L. Oziel,et al.  The evolution of light and vertical mixing across a phytoplankton ice-edge bloom , 2019, Elementa: Science of the Anthropocene.

[14]  A. Leynaert,et al.  Late spring bloom development of pelagic diatoms in Baffin Bay , 2019, Elementa: Science of the Anthropocene.

[15]  J. Dinasquet,et al.  Differential responses of bacteria to diatom-derived dissolved organic matter in the Arctic Ocean , 2018, Aquatic Microbial Ecology.

[16]  Hanna M. Kauko,et al.  Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice , 2017, Scientific Reports.

[17]  J. Fuhrman,et al.  Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. , 2016, Environmental microbiology.

[18]  M. Geoffroy,et al.  Vertical segregation of age-0 and age-1+ polar cod (Boreogadus saida) over the annual cycle in the Canadian Beaufort Sea , 2016, Polar Biology.

[19]  M. Gosselin,et al.  Arctic spring awakening – Steering principles behind the phenology of vernal ice algal blooms , 2015 .

[20]  Dariusz Stramski,et al.  Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region. , 2015, Applied optics.

[21]  Kate E. Lowry,et al.  Evidence of under-ice phytoplankton blooms in the Chukchi Sea from 1998 to 2012 , 2014 .

[22]  Kate E. Lowry,et al.  Phytoplankton blooms beneath the sea ice in the Chukchi sea , 2014 .

[23]  D. Antoine,et al.  Apparent optical properties of the Canadian Beaufort Sea - Part 1: Observational overview and water column relationships , 2013 .

[24]  Marcel Babin,et al.  Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal, and annual primary production estimates , 2013 .

[25]  Rüdiger Röttgers,et al.  Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach. , 2012, Applied optics.

[26]  P. Wassmann,et al.  Future Arctic Ocean Seasonal Ice Zones and Implications for Pelagic-Benthic Coupling , 2011 .

[27]  Deborah K. Smith,et al.  A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications , 2011 .

[28]  Geir Johnsen,et al.  Phytoplankton pigments : characterization, chemotaxonomy and applications in oceanography , 2011 .

[29]  Graham D. Quartly,et al.  Near-ubiquity of ice-edge blooms in the Arctic , 2010 .

[30]  L. Kaleschke,et al.  Sea ice remote sensing using AMSR‐E 89‐GHz channels , 2008 .

[31]  H. Claustre,et al.  Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data , 2007 .

[32]  Robert J. Olson,et al.  Automated taxonomic classification of phytoplankton sampled with imaging‐in‐flow cytometry , 2007 .

[33]  Andrew G. Dickson,et al.  Guide to best practices for ocean CO2 measurements , 2007 .

[34]  R. Bidigare,et al.  Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre , 2004 .

[35]  C. McClain,et al.  Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume I: Introduction, Background and Conventions , 2003 .

[36]  D. Vaulot,et al.  Enumeration of Phytoplankton, Bacteria, and Viruses in Marine Samples , 1999, Current Protocols in Cytometry.

[37]  R. W. Austin,et al.  Ocean Optics Protocols for Satellite Ocean Color Sensor Validation , 2013 .

[38]  C. Mobley,et al.  Estimation of the remote-sensing reflectance from above-surface measurements. , 1999, Applied optics.

[39]  N. Garcia,et al.  Wet-oxidation and automated colorimetry for simultaneous determination of organic carbon, nitrogen and phosphorus dissolved in seawater , 1999 .

[40]  Manfred Ehrhardt,et al.  Methods of seawater analysis , 1999 .

[41]  David C. Smith,et al.  A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine , 1992 .

[42]  R. Hodson,et al.  Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems , 1985, Applied and environmental microbiology.

[43]  J. Smith,et al.  A Small Volume, Short-Incubation-Time Method for Measurement of Photosynthesis as a Function of Incident Irradiance , 1983 .

[44]  H. Utermöhl Zur Vervollkommnung der quantitativen Phytoplankton-Methodik , 1958 .