Iron supported on beaded carbon black as active, selective and stable catalyst for direct CO2 to olefin conversion

[1]  M. Rønning,et al.  Can Temperature-Programmed Techniques Provide the Gold Standard for Carbon Surface Characterization? , 2022, Chemistry of Materials.

[2]  Jae Goo Lee,et al.  Gasification characteristics of waste plastics (SRF) in a bubbling fluidized bed: Effects of temperature and equivalence ratio , 2022, Energy.

[3]  Dagmar R. D’hooge,et al.  The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions , 2021 .

[4]  J. Gascón,et al.  Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO2 Utilization , 2020, ACS Catalysis.

[5]  Ding Ma,et al.  Highly Selective Olefin Production from CO 2 Hydrogenation on Iron Catalysts: A Subtle Synergy between Manganese and Sodium Additives , 2020, Angewandte Chemie.

[6]  G. Coates,et al.  Chemical recycling to monomer for an ideal, circular polymer economy , 2020, Nature Reviews Materials.

[7]  M. Bauer,et al.  Chemisches Recycling von gemischten Kunststoffabfällen als ergänzender Recyclingpfad zur Erhöhung der Recyclingquote , 2019, Österreichische Wasser- und Abfallwirtschaft.

[8]  G. Ozin,et al.  Crowd oil not crude oil , 2019, Nature Communications.

[9]  M. Oschatz,et al.  Tandem promotion of iron catalysts by sodium-sulfur and nitrogen-doped carbon layers on carbon nanotube supports for the Fischer-Tropsch to olefins synthesis , 2018, Applied Catalysis A: General.

[10]  M. Materazzi,et al.  Production of BioSNG from waste derived syngas: Pilot plant operation and preliminary assessment. , 2018, Waste management.

[11]  Xiaohao Liu,et al.  Hydrogenation of CO2 into hydrocarbons: Enhanced catalytic activity over Fe-based Fischer-Tropsch catalysts , 2018 .

[12]  Wei Xia,et al.  Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO 2 Hydrogenation , 2017 .

[13]  Min Zhang,et al.  Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer–Tropsch synthesis: understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation , 2017 .

[14]  M. Oschatz,et al.  Systematic variation of the sodium/sulfur promoter content on carbon-supported iron catalysts for the Fischer–Tropsch to olefins reaction ☆ , 2016 .

[15]  M. Oschatz,et al.  Ordered Mesoporous Materials as Supports for Stable Iron Catalysts in the Fischer–Tropsch Synthesis of Lower Olefins , 2016 .

[16]  Shirun Yan,et al.  Fischer–Tropsch Synthesis to Lower Olefins over Potassium-Promoted Reduced Graphene Oxide Supported Iron Catalysts , 2016 .

[17]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[18]  M. Virginie,et al.  Support effects in high temperature Fischer-Tropsch synthesis on iron catalysts , 2014 .

[19]  P. Chou,et al.  One-step, room-temperature synthesis of glutathione-capped iron-oxide nanoparticles and their application in in vivo T1-weighted magnetic resonance imaging. , 2014, Small.

[20]  G. Eggeler,et al.  Effect of nitrogen doping on the reducibility, activity and selectivity of carbon nanotube-supported iron catalysts applied in CO2 hydrogenation , 2014 .

[21]  Qinghong Zhang,et al.  Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts , 2013 .

[22]  J. Bitter,et al.  Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins , 2013 .

[23]  K. D. de Jong,et al.  Iron particle size effects for direct production of lower olefins from synthesis gas. , 2012, Journal of the American Chemical Society.

[24]  Kangnian Fan,et al.  Fe(x)O(y)@C spheres as an excellent catalyst for Fischer-Tropsch synthesis. , 2010, Journal of the American Chemical Society.

[25]  Ajay K. Dalai,et al.  Iron catalysts supported on carbon nanotubes for Fischer–Tropsch synthesis: Effect of catalytic site position , 2009 .

[26]  Hao Yan,et al.  Influences of different synthesis conditions on properties of Fe3O4 nanoparticles , 2009 .

[27]  M. Dry,et al.  The Fischer–Tropsch (FT) Synthesis Processes , 2008 .

[28]  A. Datye,et al.  Fe-Ru small particle bimetallic catalysts supported on carbon nanotubes for use in Fischer-Tropsch synthesis , 2007 .

[29]  J. Figueiredo,et al.  Characterization of Active Sites on Carbon Catalysts , 2007 .

[30]  Wenping Ma,et al.  Mo−Fe Catalysts Supported on Activated Carbon for Synthesis of Liquid Fuels by the Fischer−Tropsch Process: Effect of Mo Addition on Reducibility, Activity, and Hydrocarbon Selectivity , 2006 .

[31]  K. Harris,et al.  Contemporary Advances in the Use of Powder X-Ray Diffraction for Structure Determination. , 2001, Angewandte Chemie.

[32]  W. Cui,et al.  The promotions of MnO and K2O to Fe/silicalite-2 catalyst for the production of light alkenes from CO2 hydrogenation , 1998 .

[33]  C. H. Bartholomew,et al.  Effects of crystallite size and support on the carbon monoxide hydrogenation activity/selectivity properties of iron/carbon , 1986 .

[34]  ELECTROPHILIC AROMATIC,et al.  Hydrocarbons , 1964, Veterinary and human toxicology.

[35]  J. Figueiredo,et al.  Modification of the surface chemistry of activated carbons , 1999 .