The effects of retinal image motion on the limits of spatial vision

Author(s): Ratnam, Kavitha | Advisor(s): Roorda, Austin | Abstract: Vision is not a static process. Our perception of the world is not merely a sequence of fixed snapshots but rather involves a dynamic process in which the visual input is synthesized over time to provide a more detailed and informative signal than would otherwise be possible using a fixed array of sensors. This dynamic signal is largely a result of fixational eye motion, or the constant ocular jitter that creates an ever-changing signal in each photoreceptor cell. It is not known how the visual system potentially exploits such transient signals to serve our finest spatial acuity, and how the relationship between visual acuity and the photoreceptor sampling limit can be muddled because of this fact. We used an adaptive optics scanning laser ophthalmoscope to precisely control the spatiotemporal input on a cellular scale in human observers to assess how acuity differed as a function of retinal image motion. Additionally, we investigated the purpose of fixational eye motion, and in particular microsaccades, in relocating stimuli to a preferred region within the central foveal region. Combined, these results show the utility of fixational eye movements in high spatial vision.

[1]  I L Bailey,et al.  New Design Principles for Visual Acuity Letter Charts* , 1976, American journal of optometry and physiological optics.

[2]  D. Norren,et al.  Foveal densitometry in retinitis pigmentosa. , 1983 .

[3]  Lawrence C. Sincich,et al.  Resolving Single Cone Inputs to Visual Receptive Fields , 2009, Nature Neuroscience.

[4]  A. Roorda,et al.  Cone structure in patients with usher syndrome type III and mutations in the Clarin 1 gene. , 2013, JAMA ophthalmology.

[5]  Austin Roorda,et al.  Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene. , 2011, Investigative ophthalmology & visual science.

[6]  U. Tulunay-Keesey,et al.  Fading of stabilized retinal images. , 1982, Journal of the Optical Society of America.

[7]  M. Rucci,et al.  Microsaccades Precisely Relocate Gaze in a High Visual Acuity Task , 2010, Nature Neuroscience.

[8]  Austin Roorda,et al.  Mapping the Perceptual Grain of the Human Retina , 2014, The Journal of Neuroscience.

[9]  Austin Roorda,et al.  Cone structure in retinal degeneration associated with mutations in the peripherin/RDS gene. , 2011, Investigative ophthalmology & visual science.

[10]  Scott B Stevenson,et al.  How the unstable eye sees a stable and moving world. , 2013, Journal of vision.

[11]  A. A. Skavenski,et al.  Miniature eye movement. , 1973, Science.

[12]  V. M. Bondarko,et al.  What spatial frequency do we use to detect the orientation of a Landolt C? , 1997, Vision Research.

[13]  Austin Roorda,et al.  Adaptive Optics Scanning Laser Ophthalmoscope-Based Microperimetry , 2011, Optometry and vision science : official publication of the American Academy of Optometry.

[14]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[15]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[16]  L. Spillmann,et al.  Flicker adaptation in the peripheral retina , 1987, Vision Research.

[17]  Alfredo Dubra,et al.  Assessing the spatial relationship between fixation and foveal specializations , 2017, Vision Research.

[18]  Florentin Wörgötter,et al.  Eye Micro-movements Improve Stimulus Detection Beyond the Nyquist Limit in the Peripheral Retina , 2003, NIPS.

[19]  U. T. Keesey Effects of involuntary eye movements on visual acuity. , 1960, Journal of the Optical Society of America.

[20]  Austin Roorda,et al.  Identification of a novel mutation in the CDHR1 gene in a family with recessive retinal degeneration. , 2012, Archives of ophthalmology.

[21]  B. Lujan,et al.  Cone photoreceptor abnormalities correlate with vision loss in patients with Stargardt disease. , 2011, Investigative ophthalmology & visual science.

[22]  A. Roorda,et al.  Adaptive optics ophthalmoscopy. , 2015, Annual review of vision science.

[23]  R. Massof,et al.  Visual acuity loss in retinitis pigmentosa. Relationship to visual field loss. , 1990, Archives of ophthalmology.

[24]  Austin Roorda,et al.  Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery , 2010, Optics express.

[25]  F. Ferris,et al.  New visual acuity charts for clinical research. , 1982, American journal of ophthalmology.

[26]  Austin Roorda,et al.  Is visual resolution after adaptive optics correction susceptible to perceptual learning? , 2010, Journal of vision.

[27]  E. Mach,et al.  Popular scientific lectures , 1897 .

[28]  Junzhong Liang,et al.  Aberrations and retinal image quality of the normal human eye. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  L. L. Sloan,et al.  Pigmentary degeneration of the retina: early diagnosis and natural history. , 1967, Investigative ophthalmology.

[30]  Robert Michael Jones,et al.  The effect of micromovements of the eye and exposure duration on contrast sensitivity , 1976, Vision Research.

[31]  Austin Roorda,et al.  Transverse chromatic aberration across the visual field of the human eye , 2016, Journal of vision.

[32]  B. Rosner,et al.  Disease course of patients with X-linked retinitis pigmentosa due to RPGR gene mutations. , 2007, Investigative ophthalmology & visual science.

[33]  Shree K. Nayar,et al.  Video super-resolution using controlled subpixel detector shifts , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Austin Roorda,et al.  Retinally stabilized cone-targeted stimulus delivery. , 2007, Optics express.

[35]  A. G. Bennett,et al.  Improvements on Littmann's method of determining the size of retinal features by fundus photography , 1994, Graefe's Archive for Clinical and Experimental Ophthalmology.

[36]  G. Fishman,et al.  Rate of visual field loss in retinitis pigmentosa. , 1997, Ophthalmology.

[37]  Austin Roorda,et al.  Miniature eye movements measured simultaneously with ophthalmic imaging and a dual-Purkinje image eye tracker , 2010 .

[38]  Gislin Dagnelie,et al.  Vision Test Variability in Retinitis Pigmentosa and Psychosocial Factors , 2011, Optometry and vision science : official publication of the American Academy of Optometry.

[39]  H. Barlow Eye movements during fixation , 1952, The Journal of physiology.

[40]  K. Naidoo,et al.  Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. , 2016, Ophthalmology.

[41]  D. M. Tait,et al.  Spectral domain optical coherence tomography and adaptive optics: imaging photoreceptor layer morphology to interpret preclinical phenotypes. , 2010, Advances in experimental medicine and biology.

[42]  A. Dubra,et al.  Visualization of retinal vascular structure and perfusion with a nonconfocal adaptive optics scanning light ophthalmoscope. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[43]  M. Marmor,et al.  Effect of methazolamide on chronic macular edema in patients with retinitis pigmentosa. , 1994, Ophthalmology.

[44]  D. Noton,et al.  Eye movements and visual perception. , 1971, Scientific American.

[45]  L. Riggs,et al.  The disappearance of steadily fixated visual test objects. , 1953, Journal of the Optical Society of America.

[46]  Ehud Ahissar,et al.  Seeing via Miniature Eye Movements: A Dynamic Hypothesis for Vision , 2012, Front. Comput. Neurosci..

[47]  A. Dubra,et al.  Reflective afocal broadband adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[48]  R. W. DITCHBURN,et al.  Vision with a Stabilized Retinal Image , 1952, Nature.

[49]  Austin Roorda,et al.  Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope. , 2006, Optics express.

[50]  H. B. Barlow,et al.  Reconstructing the visual image in space and time , 1979, Nature.

[51]  Wolfgang Drexler,et al.  Ultra-high resolution optical coherence tomography assessment of photoreceptors in retinitis pigmentosa and related diseases. , 2006, American journal of ophthalmology.

[52]  Suzanne P. McKee,et al.  Integration regions for visual hyperacuity , 1977, Vision Research.

[53]  Gerald Westheimer,et al.  Specifying and controlling the optical image on the human retina , 2006, Progress in Retinal and Eye Research.

[54]  David Williams,et al.  A visual nonlinearity fed by single cones , 1992, Vision Research.

[55]  William S Tuten,et al.  Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions. , 2015, Investigative ophthalmology & visual science.

[56]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[57]  Austin Roorda,et al.  Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy , 2010, Optics Express.

[58]  Barbara J. Winterson,et al.  Microsaccades during finely guided visuomotor tasks , 1976, Vision Research.

[59]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[60]  A. Roorda,et al.  Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[61]  D. G. Green,et al.  Effect on grating identification of sampling with degenerate arrays. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[62]  Y. Oguchi,et al.  Correlation between Contrast Sensitivity and Visual Acuity in Retinitis pigmentosa Patients , 2002, Ophthalmologica.

[63]  D. Marr,et al.  An Information Processing Approach to Understanding the Visual Cortex , 1980 .

[64]  R. Carr,et al.  Test–retest reliability of the multifocal electroretinogram and Humphrey visual fields in patients with retinitis pigmentosa , 2004, Documenta Ophthalmologica.

[65]  J. Tukey Comparing individual means in the analysis of variance. , 1949, Biometrics.

[66]  M. Rucci,et al.  Precision of sustained fixation in trained and untrained observers. , 2012, Journal of vision.

[67]  A. Swaroop,et al.  High-resolution imaging with adaptive optics in patients with inherited retinal degeneration. , 2007, Investigative ophthalmology & visual science.