State and parameter estimation of the heat shock response system using Kalman and particle filters

MOTIVATION Traditional models of systems biology describe dynamic biological phenomena as solutions to ordinary differential equations, which, when parameters in them are set to correct values, faithfully mimic observations. Often parameter values are tweaked by hand until desired results are achieved, or computed from biochemical experiments carried out in vitro. Of interest in this article, is the use of probabilistic modelling tools with which parameters and unobserved variables, modelled as hidden states, can be estimated from limited noisy observations of parts of a dynamical system. RESULTS Here we focus on sequential filtering methods and take a detailed look at the capabilities of three members of this family: (i) extended Kalman filter (EKF), (ii) unscented Kalman filter (UKF) and (iii) the particle filter, in estimating parameters and unobserved states of cellular response to sudden temperature elevation of the bacterium Escherichia coli. While previous literature has studied this system with the EKF, we show that parameter estimation is only possible with this method when the initial guesses are sufficiently close to the true values. The same turns out to be true for the UKF. In this thorough empirical exploration, we show that the non-parametric method of particle filtering is able to reliably estimate parameters and states, converging from initial distributions relatively far away from the underlying true values. AVAILABILITY AND IMPLEMENTATION Software implementation of the three filters on this problem can be freely downloaded from http://users.ecs.soton.ac.uk/mn/HeatShock

[1]  M. Xiong,et al.  Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks , 2008, PloS one.

[2]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[3]  H. Redkey,et al.  A new approach. , 1967, Rehabilitation record.

[4]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[5]  Hiroshi Matsuno,et al.  A new regulatory interaction suggested by simulations for circadian genetic control mechanism in mammals , 2006, APBC.

[6]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[7]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[8]  B. Martin PARAMETER ESTIMATION , 2012, Statistical Methods for Biomedical Research.

[9]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[10]  Arnaud Doucet,et al.  Sequential Monte Carlo Methods to Train Neural Network Models , 2000, Neural Computation.

[11]  Mahesan Niranjan Sequential Tracking in Pricing Financial Options using Model Based and Neural Network Approaches , 1996, NIPS.

[12]  Mustafa Khammash,et al.  Parameter Estimation and Model Selection in Computational Biology , 2010, PLoS Comput. Biol..

[13]  K Sigmund,et al.  The theory of evolution and dynamic systems mathematical aspects of selection , 1984 .

[14]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[15]  Katherine C. Chen,et al.  Kinetic analysis of a molecular model of the budding yeast cell cycle. , 2000, Molecular biology of the cell.

[16]  Neil D. Lawrence,et al.  Modelling transcriptional regulation using Gaussian Processes , 2006, NIPS.

[17]  Nicolas Brunel,et al.  Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference , 2007, Bioinform..

[18]  Mark A. Girolami,et al.  BioBayes: A software package for Bayesian inference in systems biology , 2008, Bioinform..

[19]  Ursula Klingmüller,et al.  Modeling the Nonlinear Dynamics of Cellular Signal Transduction , 2004, Int. J. Bifurc. Chaos.

[20]  G. Kitagawa A self-organizing state-space model , 1998 .

[21]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[22]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[23]  Visakan Kadirkamanathan,et al.  A Function Estimation Approach to Sequential Learning with Neural Networks , 1993, Neural Computation.

[24]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[25]  D. Wilkinson Stochastic modelling for quantitative description of heterogeneous biological systems , 2009, Nature Reviews Genetics.

[26]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[27]  Visakan Kadirkamanathan,et al.  Parameter estimation and inference for stochastic reaction-diffusion systems: application to morphogenesis in D. melanogaster , 2009, BMC Systems Biology.

[28]  Antonis Papachristodoulou,et al.  Advanced Methods and Algorithms for Biological Networks Analysis , 2006, Proceedings of the IEEE.

[29]  Magnus Rattray,et al.  Bayesian inference of the sites of perturbations in metabolic pathways via Markov chain Monte Carlo , 2008, Bioinform..

[30]  M. Barenco,et al.  Ranked prediction of p53 targets using hidden variable dynamic modeling , 2006, Genome Biology.

[31]  Choujun Zhan,et al.  Parameter estimation in systems biology models using spline approximation , 2011, BMC Systems Biology.

[32]  Johannes Jaeger,et al.  Parameter estimation and determinability analysis applied to Drosophila gap gene circuits , 2008, BMC Systems Biology.

[33]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[34]  Kristine L. Bell,et al.  A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .

[35]  Visakan Kadirkamanathan,et al.  In vivo Intracellular Metabolite Dynamics Estimation by Sequential Monte Carlo Filter , 2007, 2007 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology.

[36]  D. Wilkinson,et al.  Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation , 2005, Biometrics.

[37]  G. Kitagawa Theory and Methods , 1998 .

[38]  Rajender Parsad,et al.  ESTIMATION OF PARAMETERS , 2007 .

[39]  W. Kolch Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. , 2000, The Biochemical journal.

[40]  J Kurths,et al.  Estimation of parameters and unobserved components for nonlinear systems from noisy time series. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Masao Nagasaki,et al.  Parameter Estimation of In Silico Biological Pathways with Particle Filtering Towards a Petascale Computing , 2009, Pacific Symposium on Biocomputing.