Multiple Spotlights of Attentional Selection in Human Visual Cortex

[1]  Christof Koch,et al.  A model for the neuronal implementation of selective visual attention based on temporal correlation among neurons , 1994, Journal of Computational Neuroscience.

[2]  S. A. Hillyard,et al.  Sustained division of the attentional spotlight , 2003, Nature.

[3]  B Giesbrecht,et al.  Neural mechanisms of top-down control during spatial and feature attention , 2003, NeuroImage.

[4]  Arno Villringer,et al.  A Physiological Correlate of the “Zoom Lens” of Visual Attention , 2003, The Journal of Neuroscience.

[5]  Todd B. Parrish,et al.  The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention , 2003, NeuroImage.

[6]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[7]  M. Chun,et al.  The dark side of visual attention , 2002, Current Opinion in Neurobiology.

[8]  Gustavo Deco,et al.  Large-scale neural model for visual attention: integration of experimental single-cell and fMRI data. , 2002, Cerebral cortex.

[9]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[10]  J. Wolfe,et al.  Attention is fast but volition is slow , 2000, Nature.

[11]  H. Pashler,et al.  Evidence for split attentional foci. , 2000, Journal of experimental psychology. Human perception and performance.

[12]  D. Simons Attentional capture and inattentional blindness , 2000, Trends in Cognitive Sciences.

[13]  M. Corbetta,et al.  Voluntary orienting is dissociated from target detection in human posterior parietal cortex , 2000, Nature Neuroscience.

[14]  J. Maunsell,et al.  Attention to both space and feature modulates neuronal responses in macaque area V4. , 2000, Journal of neurophysiology.

[15]  J. Juola,et al.  Evidence for Distinct Attentional Bottlenecks in Attention Switching and Attentional Blink Tasks , 2000, The Journal of general psychology.

[16]  J. Maunsell,et al.  Effects of Attention on the Processing of Motion in Macaque Middle Temporal and Medial Superior Temporal Visual Cortical Areas , 1999, The Journal of Neuroscience.

[17]  Geoffrey F. Woodman,et al.  Electrophysiological measurement of rapid shifts of attention during visual search , 1999, Nature.

[18]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[19]  S. Hillyard,et al.  Involvement of striate and extrastriate visual cortical areas in spatial attention , 1999, Nature Neuroscience.

[20]  C. Koch,et al.  Attention activates winner-take-all competition among visual filters , 1999, Nature Neuroscience.

[21]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  C. Gilbert,et al.  Attention and primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[23]  C. Gilbert,et al.  Attention Modulates Contextual Influences in the Primary Visual Cortex of Alert Monkeys , 1999, Neuron.

[24]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[25]  D. Somers,et al.  Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[27]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[28]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[29]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[30]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[31]  S. Miyauchi,et al.  Attention-regulated activity in human primary visual cortex. , 1998, Journal of neurophysiology.

[32]  Arthur F. Kramer,et al.  Further Evidence for the Division of Attention Among Non-contiguous Locations , 1998 .

[33]  R. Klein,et al.  Splitting versus sharing focal attention: comment on Castiello and Umiltà (1992). , 1998, Journal of experimental psychology. Human perception and performance.

[34]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[35]  R W Cox,et al.  Software tools for analysis and visualization of fMRI data , 1997, NMR in biomedicine.

[36]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.

[37]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[38]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[39]  H. Egeth,et al.  Are attentional dwell times inconsistent with serial visual search? , 1996, Psychonomic bulletin & review.

[40]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[41]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[43]  M. Potter,et al.  A two-stage model for multiple target detection in rapid serial visual presentation. , 1995, Journal of experimental psychology. Human perception and performance.

[44]  Kimron Shapiro,et al.  Direct measurement of attentional dwell time in human vision , 1994, Nature.

[45]  S. Yantis Multielement visual tracking: Attention and perceptual organization , 1992, Cognitive Psychology.

[46]  U. Castiello,et al.  Size of the attentional focus and efficiency of processing. , 1990, Acta psychologica.

[47]  Z W Pylyshyn,et al.  Tracking multiple independent targets: evidence for a parallel tracking mechanism. , 1988, Spatial vision.

[48]  G. Sperling,et al.  Dynamics of automatic and controlled visual attention. , 1987, Science.

[49]  D. Broadbent,et al.  From detection to identification: Response to multiple targets in rapid serial visual presentation , 1987, Perception & psychophysics.

[50]  C. Eriksen,et al.  Visual attention within and around the field of focal attention: A zoom lens model , 1986, Perception & psychophysics.

[51]  G. Sperling,et al.  Attention gating in short-term visual memory. , 1986, Psychological review.

[52]  C. Eriksen,et al.  Allocation of attention in the visual field. , 1985, Journal of experimental psychology. Human perception and performance.

[53]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[54]  D E Broadbent,et al.  Combining Attributes in Rapid Serial Visual Presentation Tasks , 1983, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[55]  Y. Tsal Movements of attention across the visual field. , 1983, Journal of experimental psychology. Human perception and performance.

[56]  G. Shulman,et al.  Moving attention through visual space. , 1979, Journal of experimental psychology. Human perception and performance.

[57]  Marilyn L. Shaw,et al.  A capacity allocation model for reaction time. , 1978 .

[58]  M. Shaw,et al.  Optimal allocation of cognitive resources to spatial locations. , 1977, Journal of experimental psychology. Human perception and performance.

[59]  W. James The principles of psychology , 1983 .