OrysPSSP: a comparative Platform for Small Secreted Proteins from rice and other plants

Plants have large diverse families of small secreted proteins (SSPs) that play critical roles in the processes of development, differentiation, defense, flowering, stress response, symbiosis, etc. Oryza sativa is one of the major crops worldwide and an excellent model for monocotyledonous plants. However, there had not been any effort to systematically analyze rice SSPs. Here, we constructed a comparative platform, OrysPSSP (http://www.genoportal.org/PSSP/index.do), involving >100 000 SSPs from rice and 25 plant species. OrysPSSP is composed of a core SSP database and a dynamic web interface that integrates a variety of user tools and resources. The current release (v0530) of core SSP database contains a total of 101 048 predicted SSPs, which were generated through a rigid computation/curation pipeline. The web interface consists of eight different modules, providing users with rich resources/functions, e.g. browsing SSP by chromosome, searching and filtering SSP, validating SSP with omics data, comparing SSP among multiple species and querying core SSP database with BLAST. Some cases of application are discussed to demonstrate the utility of OrysPSSP. OrysPSSP serves as a comprehensive resource to explore SSP on the genome scale and across the phylogeny of plant species.

[1]  Roger E Bumgarner,et al.  The genome of the domesticated apple (Malus × domestica Borkh.) , 2010, Nature Genetics.

[2]  Wen-Hsiung Li,et al.  A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. , 2007, Genome research.

[3]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[4]  H. Fukuda,et al.  TDIF Peptide Signaling Regulates Vascular Stem Cell Proliferation via the WOX4 Homeobox Gene in Arabidopsis[W] , 2010, Plant Cell.

[5]  Y. Matsubayashi,et al.  A glycopeptide regulating stem cell fate in Arabidopsis thaliana. , 2009, Nature chemical biology.

[6]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[7]  D. Andersen,et al.  Secreted Peptide Dilp8 Coordinates Drosophila Tissue Growth with Developmental Timing , 2012, Science.

[8]  Yoshihiro Kawahara,et al.  The Rice Annotation Project Database (RAP-DB): 2008 update , 2007, Nucleic Acids Res..

[9]  T. Higashiyama,et al.  Diverse functions of plant peptides: entering a new phase. , 2011, Plant & cell physiology.

[10]  K. Torii,et al.  The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. , 2007, Genes & development.

[11]  Dennis B. Troup,et al.  NCBI GEO: archive for functional genomics data sets—10 years on , 2010, Nucleic Acids Res..

[12]  Sean R Eddy,et al.  A new generation of homology search tools based on probabilistic inference. , 2009, Genome informatics. International Conference on Genome Informatics.

[13]  Samuel H. Payne,et al.  Discovery and revision of Arabidopsis genes by proteogenomics , 2008, Proceedings of the National Academy of Sciences.

[14]  Inna Dubchak,et al.  The genome portal of the Department of Energy Joint Genome Institute: 2014 updates , 2013, Nucleic Acids Res..

[15]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools , 2011, Nucleic Acids Res..

[16]  Stephen M. Mount,et al.  The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus) , 2008, Nature.

[17]  K. Okawa,et al.  Stomagen positively regulates stomatal density in Arabidopsis , 2010, Nature.

[18]  Y. Matsubayashi,et al.  Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. , 2008, The Plant journal : for cell and molecular biology.

[19]  Guy Cochrane,et al.  The International Nucleotide Sequence Database Collaboration , 2011, Nucleic Acids Res..

[20]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[21]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[22]  John A. Hamilton,et al.  The TIGR Rice Genome Annotation Resource: improvements and new features , 2006, Nucleic Acids Res..

[23]  T. Kuroiwa,et al.  Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells , 2009, Nature.

[24]  Tin Wee Tan,et al.  SPdb – a signal peptide database , 2005, BMC Bioinformatics.

[25]  Gerald A Tuskan,et al.  Discovery and annotation of small proteins using genomics, proteomics, and computational approaches. , 2011, Genome research.

[26]  Rui Wang,et al.  PRIDE: Quality control in a proteomics data repository , 2012, Database J. Biol. Databases Curation.

[27]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[28]  Rasko Leinonen,et al.  The sequence read archive: explosive growth of sequencing data , 2011, Nucleic Acids Res..

[29]  R. Simon,et al.  Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. , 1999, Science.

[30]  Hiroo Fukuda,et al.  A Plant Peptide Encoded by CLV3 Identified by in Situ MALDI-TOF MS Analysis , 2006, Science.

[31]  E. Fiume,et al.  Regulation of Arabidopsis Embryo and Endosperm Development by the Polypeptide Signaling Molecule CLE8[C][W] , 2012, Plant Cell.

[32]  K. Lease,et al.  The Arabidopsis Unannotated Secreted Peptide Database, a Resource for Plant Peptidomics[W] , 2006, Plant Physiology.

[33]  J. Poulain,et al.  The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla , 2007, Nature.

[34]  Jian Wang,et al.  BGI-RIS: an integrated information resource and comparative analysis workbench for rice genomics , 2004, Nucleic Acids Res..

[35]  Tetsuya Sakurai,et al.  sORF finder: a program package to identify small open reading frames with high coding potential , 2010, Bioinform..

[36]  Yong Zhang,et al.  SPD—a web-based secreted protein database , 2004, Nucleic Acids Res..

[37]  S. Brunak,et al.  Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. , 2000, Journal of molecular biology.

[38]  Sai Guna Ranjan Gurazada,et al.  Genome sequencing and analysis of the model grass Brachypodium distachyon , 2010, Nature.

[39]  Michael S. Barker,et al.  The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants , 2011, Science.

[40]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[41]  Burkhard Morgenstern,et al.  AUGUSTUS: ab initio prediction of alternative transcripts , 2006, Nucleic Acids Res..

[42]  G. Pearce,et al.  A Polypeptide from Tomato Leaves Induces Wound-Inducible Proteinase Inhibitor Proteins , 1991, Science.

[43]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.