Fluorescence imaging of microbe-containing particles shot from a two-stage Light-gas gun into an aerogel

[1]  H. Kawai,et al.  Design of a silica-aerogel-based cosmic dust collector for the Tanpopo mission aboard the International Space Station , 2014, 1406.3160.

[2]  M. Tabata,et al.  Study of Hybrid Dust Sample Collection System Toward Mars Aeroflyby Sample Collection Mission , 2013 .

[3]  M. Roberts,et al.  Intercontinental Dispersal of Bacteria and Archaea by Transpacific Winds , 2012, Applied and Environmental Microbiology.

[4]  K. Konstantinidis,et al.  Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications , 2012, Proceedings of the National Academy of Sciences.

[5]  M. Burchell,et al.  Experimental impact features in Stardust aerogel: How track morphology reflects particle structure, composition, and density , 2012 .

[6]  M. Burchell,et al.  Aerogel tracks made by impacts of glycine: Implications for formation of bulbous tracks in aerogel and the Stardust mission , 2012 .

[7]  H. Kawai,et al.  Tanpopo Cosmic Dust Collector: Silica Aerogel Production and Bacterial DNA Contamination Analysis , 2011, 1112.6224.

[8]  B. Bohannan,et al.  Biodiversity and biogeography of the atmosphere , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  A. Tsuchiyama,et al.  Three‐dimensional shapes and Fe contents of Stardust impact tracks: A track formation model and estimation of comet Wild 2 coma dust particle densities , 2010 .

[10]  D. Griffin,et al.  Stratospheric microbiology at 20 km over the Pacific Ocean , 2010 .

[11]  A. Yamagishi,et al.  Assessing Panspermia Hypothesis by Microorganisms Collected from The High Altitude Atmosphere , 2009 .

[12]  M. Cintala,et al.  Penetration tracks in aerogel produced by Al2O3 spheres , 2009 .

[13]  W. Nicholson,et al.  Migrating microbes and planetary protection. , 2009, Trends in microbiology.

[14]  Akihiko Yamagishi,et al.  Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the Southern Mariana Trough. , 2009, Environmental microbiology.

[15]  A. Tsuchiyama,et al.  Three‐dimensional structures and elemental distributions of Stardust impact tracks using synchrotron microtomography and X‐ray fluorescence analysis , 2009 .

[16]  Noriaki Masui,et al.  Discriminative detection and enumeration of microbial life in marine subsurface sediments , 2009, The ISME Journal.

[17]  Kazuhiko Yamada,et al.  Investigation of cultivable microorganisms in the stratosphere collected by using a balloon in 2005 , 2009 .

[18]  Richard N. Zare,et al.  Organic compound alteration during hypervelocity collection of carbonaceous materials in aerogel , 2009 .

[19]  M. Dickinson,et al.  Uplift of microorganisms by electric fields above thunderstorms , 2008 .

[20]  A. Yamagishi,et al.  UV-resistant bacteria isolated from upper troposphere and lower stratosphere , 2008 .

[21]  David C. Smith,et al.  New cell extraction procedure applied to deep subsurface sediments , 2008 .

[22]  Simon F. Green,et al.  Characteristics of cometary dust tracks in Stardust aerogel and laboratory calibrations , 2008 .

[23]  H. Kawai,et al.  TANPOPO: Astrobiology Exposure and Micrometeoroid Capture Experiments , 2007 .

[24]  Lutgarde Raskin,et al.  Automated Image Analysis for Quantitative Fluorescence In Situ Hybridization with Environmental Samples , 2007, Applied and Environmental Microbiology.

[25]  M. Burchell,et al.  Thermal alteration of hydrated minerals during hypervelocity capture to silica aerogel at the flyby speed of Stardust , 2007 .

[26]  I. Hewson,et al.  Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I , 2007, Nature Protocols.

[27]  Ian Wright,et al.  Impact Features on Stardust: Implications for Comet 81P/Wild 2 Dust , 2006, Science.

[28]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[29]  D. Griffin,et al.  Aerobiology and the global transport of desert dust. , 2006, Trends in ecology & evolution.

[30]  Mark J. Burchell,et al.  COSMIC DUST COLLECTION IN AEROGEL , 2006 .

[31]  J. Bornman,et al.  Environmental UV Radiation: Impact on Ecosystems and Human Health and Predictive Models , 2005 .

[32]  A. Robock,et al.  Climatic response to high‐latitude volcanic eruptions , 2005 .

[33]  D. Griffin Terrestrial Microorganisms at an Altitude of 20,000 m in Earth's Atmosphere , 2004 .

[34]  J. Boenigk A disintegration method for direct counting of bacteria in clay-dominated sediments: dissolving silicates and subsequent fluorescent staining of bacteria. , 2004, Journal of microbiological methods.

[35]  Christopher P. McKay,et al.  Mars-Like Soils in the Atacama Desert, Chile, and the Dry Limit of Microbial Life , 2003, Science.

[36]  A. Robock,et al.  Spatial and temporal variability of the stratospheric aerosol cloud produced by the 1991 Mount Pinatubo eruption , 2003 .

[37]  A. Maruyama,et al.  Spectral imaging detection and counting of microbial cells in marine sediment. , 2003, Journal of microbiological methods.

[38]  M. Wainwright,et al.  Microorganisms cultured from stratospheric air samples obtained at 41 km. , 2003, FEMS microbiology letters.

[39]  A. Robock The Climatic Aftermath , 2002, Science.

[40]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[41]  J. Banner,et al.  Evolution of the Sr and C Isotope Composition of Cambrian Oceans , 2000 .

[42]  Michael E. Zolensky,et al.  Impact Features and Projectile Residues in Aerogel Exposed on Mir , 2000 .

[43]  P. Verity,et al.  Improvements in image analysis and fluorescence microscopy to discriminate and enumerate bacteria and viruses in aquatic samples , 2000 .

[44]  M. Madigan,et al.  Thermophilic and halophilic extremophiles. , 1999, Current opinion in microbiology.

[45]  M. Burchell,et al.  Capture of hypervelocity particles in aerogel: in ground laboratory and low earth orbit , 1998 .

[46]  M. Weinbauer,et al.  Utility of Green Fluorescent Nucleic Acid Dyes and Aluminum Oxide Membrane Filters for Rapid Epifluorescence Enumeration of Soil and Sediment Bacteria , 1998, Applied and Environmental Microbiology.

[47]  J. Fuhrman,et al.  Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria , 1998 .

[48]  M. Blumthaler,et al.  Increase in solar UV radiation with altitude , 1997 .

[49]  W. Anderson,et al.  Physics of interplanetary dust capture via impact into organic polymer foams , 1994 .

[50]  K. Porter,et al.  The use of DAPI for identifying and counting aquatic microflora1 , 1980 .

[51]  L. W. Alvarez,et al.  Extraterrestrial Cause for the Cretaceous-Tertiary Extinction , 1980, Science.

[52]  J. Hobbie,et al.  Direct counts of aquatic bacteria by a modified epifluorescence technique1 , 1975 .

[53]  R. Mah,et al.  Acridine orange-epifluorescence technique for counting bacteria in natural waters. , 1973, Transactions of the American Microscopical Society.

[54]  J. D. Fulton Microorganisms of the upper atmosphere. 3. Relationship between altitude and micropopulation. , 1966, Applied microbiology.

[55]  J. D. Fulton,et al.  Microorganisms of the upper atmosphere. I. Instrumentation for isokinetic air sampling at altitude. , 1966, Applied microbiology.

[56]  Eric J. W. Visser,et al.  Abramoff MD, Magalhaes PJ, Ram SJ. 2004. Image Processing with ImageJ. Biophotonics , 2012 .

[57]  M. Burchell,et al.  Hypervelocity capture of particles in aerogel: Dependence on aerogel properties , 2009 .

[58]  R. Facius,et al.  Quantification of Biological Effectiveness of UV Radiation , 2006 .

[59]  K. Imagawa,et al.  Passive Measurement of Dust Particles on the Iss Using Mpac: Experiment Summary, Particle Fluxes and Chemical Analysis , 2005 .

[60]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[61]  Frank Vitzthum,et al.  Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. , 2004, Nucleic acids research.

[62]  A. Robock Pinatubo eruption. The climatic aftermath. , 2002, Science.

[63]  H. Yano,et al.  Evaluation of mineralogical alteration of micrometeoroid analog materials captured in aerogel , 2002 .

[64]  N. Shrine,et al.  Laboratory investigations of the survivability of bacteria in hypervelocity impacts. , 2001, Advances in space research : the official journal of the Committee on Space Research.

[65]  N. Mcbride,et al.  Meteoroids and small sized debris in low earth orbit and at 1 AU: Results of recent modelling , 1999 .

[66]  H. Yano,et al.  Dust impacts on the European retrievable carrier (EuReCa) spacecraft , 1994 .

[67]  G. Horneck,et al.  Discussion of a possible contamination of space with terrestrial life. , 1969, Life sciences and space research.

[68]  G. Soffen Atmospheric collection at 130,000 feet , 1965 .