Towards the cell-instructive bactericidal substrate: exploring the combination of nanotopographical features and integrin selective synthetic ligands

[1]  J. Hasan,et al.  Nanoscale Topography on Black Titanium Imparts Multi-biofunctional Properties for Orthopedic Applications , 2017, Scientific Reports.

[2]  Benjamin Geiger,et al.  A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins , 2017, Scientific Reports.

[3]  T. Webster,et al.  Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO2 surface treatment , 2017, International journal of nanomedicine.

[4]  H. Kim,et al.  Surface guidance of stem cell behavior: Chemically tailored co-presentation of integrin-binding peptides stimulates osteogenic differentiation in vitro and bone formation in vivo. , 2016, Acta biomaterialia.

[5]  B. Su,et al.  Osteogenic and bactericidal surfaces from hydrothermal titania nanowires on titanium substrates , 2016, Scientific Reports.

[6]  E. Ivanova,et al.  "Race for the Surface": Eukaryotic Cells Can Win. , 2016, ACS applied materials & interfaces.

[7]  Enateri V. Alakpa,et al.  Dynamic Surfaces for the Study of Mesenchymal Stem Cell Growth through Adhesion Regulation , 2016, ACS nano.

[8]  H. Kessler,et al.  αvβ3- or α5β1-Integrin-Selective Peptidomimetics for Surface Coating. , 2016, Angewandte Chemie.

[9]  Mark Holodniy,et al.  Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. , 2016, Biomaterials.

[10]  V. Migonney,et al.  Contribution of fibronectin and vitronectin to the adhesion and morphology of MC3T3-E1 osteoblastic cells to poly(NaSS) grafted Ti6Al4V. , 2015, Acta biomaterialia.

[11]  Saulius Juodkazis,et al.  Antibacterial titanium nano-patterned arrays inspired by dragonfly wings , 2015, Scientific Reports.

[12]  F. Albericio,et al.  Installing Multifunctionality on Titanium with RGD‐Decorated Polyurethane‐Polyurea Roxithromycin Loaded Nanoparticles: Toward New Osseointegrative Therapies , 2015, Advanced healthcare materials.

[13]  Andrés J. García,et al.  Simple coating with fibronectin fragment enhances stainless steel screw osseointegration in healthy and osteoporotic rats. , 2015, Biomaterials.

[14]  H. Kessler,et al.  Mimicking bone extracellular matrix: integrin-binding peptidomimetics enhance osteoblast-like cells adhesion, proliferation, and differentiation on titanium. , 2015, Colloids and surfaces. B, Biointerfaces.

[15]  M. Foss,et al.  Modulation of human mesenchymal stem cell behavior on ordered tantalum nanotopographies fabricated using colloidal lithography and glancing angle deposition. , 2015, ACS applied materials & interfaces.

[16]  Liu Sa,et al.  Multi-biofunctionalization of a titanium surface with a mixture of peptides to achieve excellent antimicrobial activity and biocompatibility. , 2015, Journal of materials chemistry. B.

[17]  M. Ryadnov,et al.  Cicada-inspired cell-instructive nanopatterned arrays , 2014, Scientific Reports.

[18]  Nikolaj Gadegaard,et al.  Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. , 2014, Nature materials.

[19]  F. Albericio,et al.  Novel peptide-based platform for the dual presentation of biologically active peptide motifs on biomaterials. , 2014, ACS applied materials & interfaces.

[20]  E. Novellino,et al.  Pharmacophoric modifications lead to superpotent αvβ3 integrin ligands with suppressed α5β1 activity. , 2014, Journal of medicinal chemistry.

[21]  Saulius Juodkazis,et al.  Bactericidal activity of black silicon , 2013, Nature Communications.

[22]  P. Granja,et al.  Functionalization of biomaterials with small osteoinductive moieties. , 2013, Acta biomaterialia.

[23]  E. Ivanova,et al.  Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces , 2013, Applied Microbiology and Biotechnology.

[24]  R. Burgkart,et al.  A molecular toolkit for the functionalization of titanium-based biomaterials that selectively control integrin-mediated cell adhesion. , 2013, Chemistry.

[25]  M. Mortimer,et al.  Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review , 2013, Archives of Toxicology.

[26]  H. Kessler,et al.  Functionalizing αvβ3- or α5β1-selective integrin antagonists for surface coating: a method to discriminate integrin subtypes in vitro. , 2013, Angewandte Chemie.

[27]  O. Fromigué,et al.  Peptide‐based activation of alpha5 integrin for promoting osteogenesis , 2012, Journal of cellular biochemistry.

[28]  Elena P Ivanova,et al.  Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. , 2012, Small.

[29]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[30]  K. Kilian,et al.  Directing stem cell fate by controlling the affinity and density of ligand-receptor interactions at the biomaterials interface. , 2012, Angewandte Chemie.

[31]  K. Neoh,et al.  Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. , 2012, Biomaterials.

[32]  J. Frith,et al.  Lateral spacing of adhesion peptides influences human mesenchymal stem cell behaviour , 2012, Journal of Cell Science.

[33]  David F. Williams The role of short synthetic adhesion peptides in regenerative medicine; the debate. , 2011, Biomaterials.

[34]  J. Lovmand,et al.  Focal complex maturation and bridging on 200 nm vitronectin but not fibronectin patches reveal different mechanisms of focal adhesion formation. , 2011, Nano letters.

[35]  Milan Mrksich,et al.  Geometric cues for directing the differentiation of mesenchymal stem cells , 2010, Proceedings of the National Academy of Sciences.

[36]  Thomas J Webster,et al.  The relationship between the nanostructure of titanium surfaces and bacterial attachment. , 2010, Biomaterials.

[37]  R Geoff Richards,et al.  The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. , 2009, Biomaterials.

[38]  Matthew J Dalby,et al.  Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. , 2009, Acta biomaterialia.

[39]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[40]  Sungho Jin,et al.  Stem cell fate dictated solely by altered nanotube dimension , 2009, Proceedings of the National Academy of Sciences.

[41]  Steven M. Kurtz,et al.  The Epidemiology of Revision Total Knee Arthroplasty in the United States , 2009, Clinical orthopaedics and related research.

[42]  C. Wilkinson,et al.  The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. , 2007, Nature materials.

[43]  S. Kurtz,et al.  Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. , 2007, The Journal of bone and joint surgery. American volume.

[44]  P. Eysel,et al.  Influence on Mitochondria and Cytotoxicity of Different Antibiotics Administered in High Concentrations on Primary Human Osteoblasts and Cell Lines , 2006, Antimicrobial Agents and Chemotherapy.

[45]  Stefan Rammelt,et al.  Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. , 2006, Biomaterials.

[46]  S. Goodman,et al.  Titanium Implant Materials with Improved Biocompatibility through Coating with Phosphonate‐Anchored Cyclic RGD Peptides , 2005, Chembiochem : a European journal of chemical biology.

[47]  Tejal A Desai,et al.  Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion. , 2005, Biomaterials.

[48]  Christopher S. Chen,et al.  Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. , 2004, Developmental cell.

[49]  C. Stanford,et al.  Osteoblast Integrin Adhesion and Signaling Regulate Mineralization , 2001, Journal of dental research.

[50]  John D. Brooks,et al.  Properties of the stainless steel substrate, influencing the adhesion of thermo-resistant streptococci , 2000 .

[51]  A. Bershadsky,et al.  Focal contacts of normal and RSV-transformed quail cells. Hypothesis of the transformation-induced deficient maturation of focal contacts. , 1985, Experimental cell research.

[52]  Hongyi Li,et al.  The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. , 2015, Biomaterials.

[53]  R. Burgkart,et al.  Behavior of primary human osteoblasts on trimmed and sandblasted Ti6Al4V surfaces functionalized with integrin αvβ3-selective cyclic RGD peptides. , 2013, Journal of biomedical materials research. Part A.

[54]  J. Avery Critical review. , 2006, The Journal of the Arkansas Medical Society.