Ecological metrics predict connectivity better than geographic distance

We use microsatellite loci to examine genetic structure of the Florida scrub lizard (Sceloporus woodi) and test for the effects of landscape variables at the scale of neighboring patches. We evaluate ecological metrics of connectivity with genetics data, which to our knowledge is the first application of these particular metrics to landscape-level genetics studies in Florida scrub. Florida scrub is a highly threatened ecosystem in which habitat patches are remnants of a previously widespread xeric landscape. Analysis of mitochondrial DNA (mtDNA) has shown that landscape structure influenced the evolutionary history of the Florida scrub lizard (S. woodi) across its range. Our results concur with these mtDNA studies in documenting divergence between xeric ridge systems and also demonstrate divergence at very local scales. Both least-cost distance and pairwise isolation (a metric used in ecological studies that includes patch size, quality and a modified isolation index) were better predictors of genetic distance than Euclidean distance, indicating that mesic and hydric habitat influence spatial patterns in genetic variation. Our results support the need for focusing on spatial distribution of scrub habitat at the scale of neighboring patches, as well as regionally, in conservation management and restoration. Also, our study points to the value of integrating landscape ecology metrics into landscape genetics.

[1]  R. A. Anderson,et al.  A Comparison of Corridors and Intrinsic Connectivity to Promote Dispersal in Transient Successional Landscapes , 1997 .

[2]  F. Ronquist Historical Biogeography , 2005 .

[3]  Laurent Excoffier,et al.  Arlequin (version 3.0): An integrated software package for population genetics data analysis , 2005, Evolutionary bioinformatics online.

[4]  W. Rice ANALYZING TABLES OF STATISTICAL TESTS , 1989, Evolution; international journal of organic evolution.

[5]  C. Oosterhout,et al.  Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data , 2004 .

[6]  Atte Moilanen,et al.  SIMPLE CONNECTIVITY MEASURES IN SPATIAL ECOLOGY , 2002 .

[7]  H. Pulliam,et al.  Sources, Sinks, and Population Regulation , 1988, The American Naturalist.

[8]  L. Fahrig,et al.  Connectivity is a vital element of landscape structure , 1993 .

[9]  D. McDonald,et al.  Genetic variation in some plants of Florida scrub , 1996 .

[10]  L. De Meester,et al.  Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distance , 2001, Molecular ecology.

[11]  T. Lamb,et al.  Intraspecific phylogeography of the gopher tortoise, Gopherus polyphemus: RFLP analysis of amplified mtDNA segments , 1995, Molecular ecology.

[12]  Brett J. Goodwin,et al.  Is landscape connectivity a dependent or independent variable? , 2003, Landscape Ecology.

[13]  R. Petit,et al.  Identifying Populations for Conservation on the Basis of Genetic Markers , 1998 .

[14]  Erik Matthysen,et al.  The application of 'least-cost' modelling as a functional landscape model , 2003 .

[15]  John F. Lehmkuhl,et al.  Landscape permeability for large carnivores in Washington: a geographic information system weighted-distance and least-cost corridor assessment. , 2002 .

[16]  J. W. Cooper Nature conservation 2: the role of corridors , 1992 .

[17]  Lenore Fahrig,et al.  Determinants of local population size in patchy habitats , 1988 .

[18]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[19]  J. Roland,et al.  Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae) , 1999, Molecular ecology.

[20]  G. Luikart,et al.  Conservation and the genetics of populations , 2006 .

[21]  S. Saura,et al.  Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation , 2006, Landscape Ecology.

[22]  E. McCoy,et al.  HABITAT FRAGMENTATION AND THE ABUNDANCES OF VERTEBRATES IN THE FLORIDA SCRUB , 1999 .

[23]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[24]  L. Branch,et al.  Associations between patch area and vital rates: Consequences for local and regional populations , 2003 .

[25]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[26]  B. Purdy Wet Site Archaeology , 1990 .

[27]  A. Storfer,et al.  Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum) , 2005, Molecular ecology.

[28]  L. Branch,et al.  Effects of natural habitat fragmentation on an endemic scrub lizard (Sceloporus woodi): an historical perspective based on a mitochondrial DNA gene genealogy , 1999, Molecular ecology.

[29]  Bradley M. Stith,et al.  Comparison of Two Types of Metapopulation Models in Real and Artificial Landscapes , 2001 .

[30]  S. Barrett,et al.  Spatial and temporal variation in population size of Eichhornia paniculata in ephemeral habitats: implications for metapopulation dynamics , 1998 .

[31]  L. Branch,et al.  Polymorphic microsatellite markers for the Florida scrub lizard ( Sceloporus woodi ) , 2004 .

[32]  J. Habel,et al.  Relict species : phylogeography and conservation biology , 2010 .

[33]  W. Watts,et al.  Environments of Florida in the Late Wisconsin and Holocene , 1988 .

[34]  F. Allendorf,et al.  Blackwell Publishing, Ltd. , 2003 .

[35]  S. Wright,et al.  Evolution in Mendelian Populations. , 1931, Genetics.

[36]  Craig Moritz,et al.  Strategies to protect biological diversity and the evolutionary processes that sustain it. , 2002, Systematic biology.

[37]  J. Gamarra,et al.  Metapopulation Ecology , 2007 .

[38]  L. Excoffier,et al.  Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. , 1992, Genetics.

[39]  L. Harris,et al.  Effect of High‐Intensity Wildfire and Silvicultural Treatments on Reptile Communities in Sand‐Pine Scrub , 1994 .

[40]  E. Matthysen,et al.  Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.) , 2003, Landscape Ecology.

[41]  Sokal Rr,et al.  Biometry: the principles and practice of statistics in biological research 2nd edition. , 1981 .

[42]  E. McCoy,et al.  Rarity of Organisms in the Sand Pine Scrub Habitat of Florida , 1992 .

[43]  Andrew D. Taylor,et al.  Empirical Evidence for Metapopulation Dynamics , 1997 .

[44]  Pierre Taberlet,et al.  Landscape genetics: combining landscape ecology and population genetics , 2003 .

[45]  P. Stapp,et al.  GENETIC STRUCTURE OF A METAPOPULATION OF BLACK-TAILED PRAIRIE DOGS , 2001 .

[46]  E. McCoy,et al.  POPULATION BIOLOGY OF THE RARE FLORIDA SCRUB LIZARD IN FRAGMENTED HABITAT , 2004 .

[47]  D. Faith,et al.  Comparative phylogeography and the identification of genetically divergent areas for conservation , 1998 .

[48]  Helene H. Wagner,et al.  Landscape Genetics , 2008 .

[49]  Elizabeth E. Crone,et al.  Patch Size and Connectivity Thresholds for Butterfly Habitat Restoration , 2005 .

[50]  R. Sokal,et al.  Multiple regression and correlation extensions of the mantel test of matrix correspondence , 1986 .

[51]  D. Bonte,et al.  Patch quality and connectivity influence spatial dynamics in a dune wolfspider , 2003, Oecologia.

[52]  J. Goudet FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics , 1995 .

[53]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[54]  L. Waits,et al.  Putting the ‘landscape’ in landscape genetics , 2007, Heredity.

[55]  J. Avise Molecular population structure and the biogeographic history of a regional fauna : a case history with lessons for conservation biology , 1992 .

[56]  K. Crandall,et al.  Considering evolutionary processes in conservation biology. , 2000, Trends in ecology & evolution.

[57]  L. Branch,et al.  Habitat Patch Size Affects Demographics of the Florida Scrub Lizard (Sceloporus woodi) , 2003 .

[58]  Eric J. Gustafson,et al.  The Effect of Landscape Heterogeneity on the Probability of Patch Colonization , 1996 .

[59]  P. Moler,et al.  Fragmented landscapes, habitat specificity, and conservation genetics of three lizards in Florida scrub , 2003, Conservation Genetics.

[60]  I. Hanski A Practical Model of Metapopulation Dynamics , 1994 .

[61]  R. L. Myers,et al.  Ecosystems of Florida. , 1991 .

[62]  A. Estoup,et al.  Microsatellite null alleles and estimation of population differentiation. , 2007, Molecular biology and evolution.

[63]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. , 2003, Genetics.

[64]  S. Wright Evolution in mendelian populations , 1931 .

[65]  Helene H. Wagner,et al.  A brief guide to Landscape Genetics , 2006, Landscape Ecology.

[66]  W. M. Whitten,et al.  A New Dicerandra (Labiatae) from the Lake Wales Ridge of Florida, with a Cladistic Analysis and Discussion of Endemism , 1989 .

[67]  B. Stith,et al.  EFFECTS OF LANDSCAPE STRUCTURE IN FLORIDA SCRUB: A POPULATION PERSPECTIVE , 1999 .

[68]  Nicolas Ray,et al.  Genetic isolation by distance and landscape connectivity in the American marten (Martes americana) , 2006, Landscape Ecology.