On the theoretical and numerical modelling of Armstrong–Frederick kinematic hardening in the finite strain regime

[1]  M. Itskov Computation of the exponential and other isotropic tensor functions and their derivatives , 2003 .

[2]  Stefanie Reese,et al.  On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo‐mechanical coupling in plane strain problems , 2003 .

[3]  S. Reese,et al.  On the use of evolving structure tensors to model initial and induced elastic and inelastic anisotropy at finite deformation , 2003 .

[4]  Stefanie Reese,et al.  Meso-macro modelling of fibre-reinforced rubber-like composites exhibiting large elastoplastic deformation , 2003 .

[5]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[6]  M. Itskov,et al.  A closed-form representation for the derivative of non-symmetric tensor power series , 2002 .

[7]  E. A. de Souza Neto,et al.  A fast, one-equation integration algorithm for the Lemaitre ductile damage model , 2002 .

[8]  Nobutada Ohno,et al.  Implementation of cyclic plasticity models based on a general form of kinematic hardening , 2002 .

[9]  Bob Svendsen,et al.  On the modelling of anisotropic elastic and inelastic material behaviour at large deformation , 2001 .

[10]  F. Mollica The inelastic behavior of metals subject to loading reversal , 2001 .

[11]  Tasnim Hassan,et al.  Kinematic hardening rules in uncoupled modeling for multiaxial ratcheting simulation , 2001 .

[12]  Alexander M. Puzrin,et al.  Fundamentals of kinematic hardening hyperplasticity , 2001 .

[13]  John Sawyer,et al.  An implicit algorithm using explicit correctors for the kinematic hardening model with multiple back stresses , 2001 .

[14]  E. A. de Souza Neto,et al.  The exact derivative of the exponential of an unsymmetric tensor , 2001 .

[15]  Alexander Lion,et al.  Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models , 2000 .

[16]  Rolf Mahnken,et al.  Improved implementation of an algorithm for non-linear isotropic/kinematic hardening in elastoplasticity , 1999 .

[17]  A. Bertram An alternative approach to finite plasticity based on material isomorphisms , 1999 .

[18]  Akhtar S. Khan,et al.  On the evolution of isotropic and kinematic hardening with finite plastic deformation Part I: compression/tension loading of OFHC copper cylinders , 1999 .

[19]  Bob Svendsen,et al.  Hyperelastic models for elastoplasticity with non-linear isotropic and kinematic hardening at large deformation , 1998 .

[20]  S. Reese,et al.  A theory of finite viscoelasticity and numerical aspects , 1998 .

[21]  B. Svendsen A thermodynamic formulation of finite-deformation elastoplasticity with hardening based on the concept of material isomorphism , 1998 .

[22]  Stefan Hartmann,et al.  On the numerical treatment of finite deformations in elastoviscoplasticity , 1997 .

[23]  S. Hartmann,et al.  AN EFFICIENT STRESS ALGORITHM WITH APPLICATIONS IN VISCOPLASTICITY AND PLASTICITY , 1997 .

[24]  Christian Miehe,et al.  Exponential Map Algorithm for Stress Updates in Anisotropic Multiplicative Elastoplasticity for Single Crystals , 1996 .

[25]  C. Tsakmakis Original ArticleKinematic hardening rules in finite plasticity Part II: Some examples , 1996 .

[26]  C. Tsakmakis Original ArticleKinematic hardening rules in finite plasticity Part I: A constitutive approach , 1996 .

[27]  Georges Cailletaud,et al.  Integration methods for complex plastic constitutive equations , 1996 .

[28]  Paul Steinmann,et al.  On the numerical treatment and analysis of finite deformation ductile single crystal plasticity , 1996 .

[29]  N. Ohno,et al.  Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratchetting behavior , 1993 .

[30]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[31]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[32]  M. Ortiz,et al.  A material‐independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics , 1992 .

[33]  Klaus-Jürgen Bathe,et al.  A hyperelastic‐based large strain elasto‐plastic constitutive formulation with combined isotropic‐kinematic hardening using the logarithmic stress and strain measures , 1990 .

[34]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[35]  L. Anand,et al.  Finite deformation constitutive equations and a time integrated procedure for isotropic hyperelastic—viscoplastic solids , 1990 .

[36]  J. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .

[37]  J. Chaboche Time-independent constitutive theories for cyclic plasticity , 1986 .

[38]  A. Dogui,et al.  Kinematic hardening in large elastoplastic strain , 1985 .

[39]  F. Bloom,et al.  Material uniformity and inhomogeneity in anelastic bodies , 1974 .

[40]  P. R. Pinnock,et al.  The mechanical properties of solid polymers , 1966 .

[41]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[42]  M. De Handbuch der Physik , 1957 .