Probabilistic approach for active control based on structural energy

This paper presents an active control algorithm using the probability density function of structural energy. It is assumed that structural energy under excitation has a Rayleigh probability distribution. This assumption is based on the fact that the Rayleigh distribution satisfies the condition that the structural energy is always positive and the occurrence probability of minimum energy is zero. The magnitude of the control force is determined by the probability that the structural energy exceeds the specified target critical energy, and the sign of the control force is determined by the Lyapunov controller design method. The proposed control algorithm shows much reduction of peak responses under seismic excitation compared with the LQR controller, and it can consider the control force limit in the controller design. Also, the chattering problem which sometimes occurs in the Lyapunov controller can be avoided. Copyright © 2003 John Wiley & Sons, Ltd.