AALpy: an active automata learning library
暂无分享,去创建一个
Bernhard K. Aichernig | Martin Tappler | Ingo Pill | Edi Muskardin | Andrea Pferscher | B. Aichernig | Ingo Pill | Martin Tappler | Edi Muškardin | Andrea Pferscher
[1] Fides Aarts,et al. Generating Models of Infinite-State Communication Protocols Using Regular Inference with Abstraction , 2010, ICTSS.
[2] Bernhard Steffen,et al. From ZULU to RERS - Lessons Learned in the ZULU Challenge , 2010, ISoLA.
[3] Marta Z. Kwiatkowska,et al. PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.
[4] Dana Angluin,et al. Learning Regular Sets from Queries and Counterexamples , 1987, Inf. Comput..
[5] Roland Groz,et al. Inferring Mealy Machines , 2009, FM.
[6] Bernhard Steffen,et al. The Open-Source LearnLib - A Framework for Active Automata Learning , 2015, CAV.
[7] Kim G. Larsen,et al. L*-Based Learning of Markov Decision Processes , 2019, FM.
[8] Bernhard K. Aichernig,et al. Learning-Based Fuzzing of IoT Message Brokers , 2021, 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST).
[9] Marijn J. H. Heule,et al. Exact DFA Identification Using SAT Solvers , 2010, ICGI.
[10] Frits W. Vaandrager,et al. Benchmarks for Automata Learning and Conformance Testing , 2018, Models, Mindsets, Meta.
[11] Ronald L. Rivest,et al. Inference of finite automata using homing sequences , 1989, STOC '89.
[12] Bernhard K. Aichernig,et al. Learning Abstracted Non-deterministic Finite State Machines , 2020, ICTSS.
[13] Bernhard K. Aichernig,et al. Model Learning and Model-Based Testing , 2018, Machine Learning for Dynamic Software Analysis.