Dynamics of Eye-Position Signals in the Dorsal Visual System

BACKGROUND Many visual areas of the primate brain contain signals related to the current position of the eyes in the orbit. These cortical eye-position signals are thought to underlie the transformation of retinal input-which changes with every eye movement-into a stable representation of visual space. For this coding scheme to work, such signals would need to be updated fast enough to keep up with the eye during normal exploratory behavior. We examined the dynamics of cortical eye-position signals in four dorsal visual areas of the macaque brain: the lateral and ventral intraparietal areas (LIP; VIP), the middle temporal area (MT), and the medial-superior temporal area (MST). We recorded extracellular activity of single neurons while the animal performed sequences of fixations and saccades in darkness. RESULTS The data show that eye-position signals are updated predictively, such that the representation shifts in the direction of a saccade prior to (<100 ms) the actual eye movement. Despite this early start, eye-position signals remain inaccurate until shortly after (10-150 ms) the eye movement. By using simulated behavioral experiments, we show that this brief misrepresentation of eye position provides a neural explanation for the psychophysical phenomenon of perisaccadic mislocalization, in which observers misperceive the positions of visual targets flashed around the time of saccadic eye movements. CONCLUSIONS Together, these results suggest that eye-position signals in the dorsal visual system are updated rapidly across eye movements and play a direct role in perceptual localization, even when they are erroneous.

[1]  Mingsha Zhang,et al.  The proprioceptive representation of eye position in monkey primary somatosensory cortex , 2007, Nature Neuroscience.

[2]  K. Hoffmann,et al.  Eye position effects in monkey cortex. II. Pursuit- and fixation-related activity in posterior parietal areas LIP and 7A. , 1997, Journal of neurophysiology.

[3]  M. Goldberg,et al.  Activity in the Lateral Intraparietal Area Predicts the Goal and Latency of Saccades in a Free-Viewing Visual Search Task , 2006, The Journal of Neuroscience.

[4]  M. Lappe,et al.  Contrast dependency of saccadic compression and suppression , 2004, Vision Research.

[5]  L. Matin,et al.  Visual Perception of Direction for Stimuli Flashed During Voluntary Saccadic Eye Movements , 1965, Science.

[6]  K. Hoffmann,et al.  Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. , 1997, Journal of neurophysiology.

[7]  N. Bischof,et al.  Untersuchungen und Überlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen , 1968 .

[8]  Frank Bremmer,et al.  Neural Correlates of Visual Localization and Perisaccadic Mislocalization , 2003, Neuron.

[9]  R. M. Siegel,et al.  Maps of Visual Space in Human Occipital Cortex Are Retinotopic, Not Spatiotopic , 2008, The Journal of Neuroscience.

[10]  James W Bisley,et al.  A Lack of Anticipatory Remapping of Retinotopic Receptive Fields in the Middle Temporal Area , 2011, The Journal of Neuroscience.

[11]  H. Honda The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades , 1991, Vision Research.

[12]  M. Ibbotson,et al.  Visual perception and saccadic eye movements , 2011, Current Opinion in Neurobiology.

[13]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  Jordan Pola,et al.  Models of the mechanism underlying perceived location of a perisaccadic flash , 2004, Vision Research.

[15]  M. Schlag-Rey,et al.  Through the eye, slowly; Delays and localization errors in the visual system , 2002, Nature Reviews Neuroscience.

[16]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[17]  David C. Burr,et al.  Compression of visual space before saccades , 1997, Nature.

[18]  R. Andersen,et al.  Coding of intention in the posterior parietal cortex , 1997, Nature.

[19]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  D A Robinson,et al.  The use of control systems analysis in the neurophysiology of eye movements. , 1981, Annual review of neuroscience.

[21]  P Dassonville,et al.  Oculomotor localization relies on a damped representation of saccadic eye displacement in human and nonhuman primates , 1992, Visual Neuroscience.

[22]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[23]  K. Hoffmann,et al.  Neural Dynamics of Saccadic Suppression , 2009, Journal of Neuroscience.

[24]  T. Sejnowski,et al.  Spatial Transformations in the Parietal Cortex Using Basis Functions , 1997, Journal of Cognitive Neuroscience.

[25]  Kathleen E Cullen,et al.  Discharge dynamics of oculomotor neural integrator neurons during conjugate and disjunctive saccades and fixation. , 2003, Journal of neurophysiology.

[26]  D. Burr,et al.  Spatiotopic selectivity of BOLD responses to visual motion in human area MT , 2007, Nature Neuroscience.

[27]  Bart Krekelberg,et al.  Summation of Visual Motion across Eye Movements Reflects a Nonspatial Decision Mechanism , 2010, The Journal of Neuroscience.

[28]  Christopher D Chambers,et al.  Parietal stimulation destabilizes spatial updating across saccadic eye movements , 2007, Proceedings of the National Academy of Sciences.

[29]  David Melcher,et al.  Spatiotopic temporal integration of visual motion across saccadic eye movements , 2003, Nature Neuroscience.

[30]  C. Galletti,et al.  Gaze-dependent visual neurons in area V3A of monkey prestriate cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[32]  David C. Burr,et al.  Spatiotopic Coding of BOLD Signal in Human Visual Cortex Depends on Spatial Attention , 2011, PloS one.

[33]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[34]  Masaki Tanaka Spatiotemporal properties of eye position signals in the primate central thalamus. , 2007, Cerebral cortex.

[35]  Frank Bremmer,et al.  Receptive Field Positions in Area MT during Slow Eye Movements , 2011, The Journal of Neuroscience.

[36]  A. Pouget,et al.  Efficient computation and cue integration with noisy population codes , 2001, Nature Neuroscience.

[37]  M M Hayhoe,et al.  Spatio-temporal organization of behavior. , 2000, Spatial vision.

[38]  Bart Krekelberg,et al.  Postsaccadic visual references generate presaccadic compression of space , 2000, Nature.

[39]  F Bremmer,et al.  Eye position encoding in the macaque ventral intraparietal area (VIP). , 1999, Neuroreport.

[40]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[41]  J Schlag,et al.  Visuomotor functions of central thalamus in monkey. I. Unit activity related to spontaneous eye movements. , 1984, Journal of neurophysiology.