Modelling the AGN broad-line region using single-epoch spectra − II. Nearby AGNs

The structure of the broad-line region (BLR) is an essential ingredient in the determination of active galactic nucleus (AGN) virial black hole masses, which in turn are important to study the role of black holes in galaxy evolution. Constraints on the BLR geometry and dynamics can be obtained from velocity-resolved studies using reverberation mapping data (i.e. monitoring data). However, monitoring data are observationally expensive and only available for a limited sample of AGNs, mostly confined to the local Universe. Here, we explore a new version of a Bayesian inference, physical model of the BLR that uses an individual spectrum and prior information on the BLR size from the radius–luminosity relation, to model the AGN BLR geometry and dynamics. We apply our model to a sample of 11 AGNs, which have been previously modelled using monitoring data. Our single-epoch BLR model is able to constrain some of the BLR parameters with inferred parameter values that agree within the uncertainties with those determined from the modelling of monitoring data. We find that our model is able to derive stronger constraints on the BLR for AGNs with broad emission lines that qualitatively have more substructure and more asymmetry, presumably as they contain more information to constrain the physical model. The performance of this model makes it a practical and cost-effective tool to determine some of the BLR properties of a large sample of low- and high-redshift AGNs, for which monitoring data are not available.

[1]  A. Barth,et al.  Modelling the AGN broad line region using single-epoch spectra – I. The test case of Arp 151 , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  N. E. Sommer,et al.  C iv black hole mass measurements with the Australian Dark Energy Survey (OzDES) , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  M. Vestergaard Black hole masses in active galactic nuclei , 2019, Nature Astronomy.

[4]  L. Ho,et al.  Gemini GNIRS Near-infrared Spectroscopy of 50 Quasars at z ≳ 5.7 , 2018, The Astrophysical Journal.

[5]  C. D. Laney,et al.  The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad-line Region , 2018, The Astrophysical Journal.

[6]  T. Treu,et al.  Stability of the Broad-line Region Geometry and Dynamics in Arp 151 Over Seven Years , 2018, 1803.02318.

[7]  A. Myers,et al.  The Sloan Digital Sky Survey Quasar Catalog: Fourteenth data release , 2017, 1712.05029.

[8]  H. Rix,et al.  An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.

[9]  M. Vestergaard,et al.  Spectral energy distribution variations of nearby Seyfert galaxies during AGN watch monitoring programs , 2017, 1710.07051.

[10]  T. Treu,et al.  The Structure of the Broad-line Region in Active Galactic Nuclei. II. Dynamical Modeling of Data From the AGN10 Reverberation Mapping Campaign , 2017, 1705.02346.

[11]  M. Elvis Quasar Rain: The Broad Emission Line Region as Condensations in the Warm Accretion Disk Wind , 2017, 1703.02956.

[12]  D. N. Okhmat,et al.  Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548 , 2017, 1702.01177.

[13]  M. Eracleous,et al.  Double-Peaked Profiles: Ubiquitous Signatures of Disks in the Broad Emission Lines of Active Galactic Nuclei , 2016, 1612.06843.

[14]  S. Kozłowski VIRIAL BLACK HOLE MASS ESTIMATES FOR 280,000 AGNs FROM THE SDSS BROADBAND PHOTOMETRY AND SINGLE-EPOCH SPECTRA , 2016, 1609.09489.

[15]  Brendon Brewer,et al.  DNest3: Diffusive Nested Sampling , 2016 .

[16]  L. Ho,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. VI. VELOCITY-RESOLVED REVERBERATION MAPPING OF THE Hβ LINE , 2016, 1602.01922.

[17]  S. Kaspi,et al.  Super- and sub-Eddington accreting massive black holes: a comparison of slim and thin accretion discs through study of the spectral energy distribution , 2016, 1601.07177.

[18]  S. Serjeant,et al.  REST-FRAME OPTICAL SPECTRA AND BLACK HOLE MASSES OF 3 < z < 6 QUASARS , 2015, 1504.00058.

[19]  S. B. Cenko,et al.  THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES , 2015, 1503.01146.

[20]  M. Bentz,et al.  The AGN Black Hole Mass Database , 2014, 1411.2596.

[21]  Bradley M. Peterson,et al.  Measuring the Masses of Supermassive Black Holes , 2014 .

[22]  Brendon J. Brewer,et al.  Modelling reverberation mapping data – I. Improved geometric and dynamical models and comparison with cross-correlation results , 2014, 1407.2941.

[23]  Brendon J. Brewer,et al.  Modelling reverberation mapping data – II. Dynamical modelling of the Lick AGN Monitoring Project 2008 data set , 2013, 1311.6475.

[24]  L. Ho,et al.  A BAYESIAN APPROACH TO ESTIMATE THE SIZE AND STRUCTURE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI USING REVERBERATION MAPPING DATA , 2013, 1310.3907.

[25]  P. Martini,et al.  STELLAR VELOCITY DISPERSION MEASUREMENTS IN HIGH-LUMINOSITY QUASAR HOSTS AND IMPLICATIONS FOR THE AGN BLACK HOLE MASS SCALE , 2013, 1305.2447.

[26]  Bradley M. Peterson,et al.  THE LOW-LUMINOSITY END OF THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI , 2013, 1303.1742.

[27]  W. Kollatschny,et al.  The shape of broad-line profiles in AGN , 2012, 1211.3065.

[28]  D. N. Okhmat,et al.  THE STRUCTURE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI. I. RECONSTRUCTED VELOCITY-DELAY MAPS , 2012, 1210.2397.

[29]  K. Korista,et al.  The broad emission-line region: the confluence of the outer accretion disc with the inner edge of the dusty torus , 2012, 1207.6339.

[30]  D. N. Okhmat,et al.  REVERBERATION MAPPING RESULTS FOR FIVE SEYFERT 1 GALAXIES , 2012, 1206.6523.

[31]  C. D. Laney,et al.  THE LICK AGN MONITORING PROJECT 2011: REVERBERATION MAPPING OF MARKARIAN 50 , 2011, 1111.0061.

[32]  T. Treu,et al.  THE MASS OF THE BLACK HOLE IN Arp 151 FROM BAYESIAN MODELING OF REVERBERATION MAPPING DATA , 2011, 1104.4794.

[33]  Caltech,et al.  ACCRETION RATE AND THE PHYSICAL NATURE OF UNOBSCURED ACTIVE GALAXIES , 2011, 1103.0276.

[34]  T. Treu,et al.  GEOMETRIC AND DYNAMICAL MODELS OF REVERBERATION MAPPING DATA , 2011, 1101.4952.

[35]  Berkeley,et al.  THE LICK AGN MONITORING PROJECT: VELOCITY-DELAY MAPS FROM THE MAXIMUM-ENTROPY METHOD FOR Arp 151 , 2010, 1007.0781.

[36]  M. C. Bentz,et al.  REVERBERATION MAPPING MEASUREMENTS OF BLACK HOLE MASSES IN SIX LOCAL SEYFERT GALAXIES , 2010, 1006.4160.

[37]  M. Dimitrijević,et al.  ANALYSIS OF OPTICAL Fe ii EMISSION IN A SAMPLE OF ACTIVE GALACTIC NUCLEUS SPECTRA , 2010, 1004.2212.

[38]  E. Bullock,et al.  MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK , 2010, 1004.0276.

[39]  Brendon J. Brewer,et al.  Diffusive nested sampling , 2009, Stat. Comput..

[40]  Usa,et al.  QUANTIFYING QUASAR VARIABILITY AS PART OF A GENERAL APPROACH TO CLASSIFYING CONTINUOUSLY VARYING SOURCES , 2009, 0909.1326.

[41]  Takeo Minezaki,et al.  THE LICK AGN MONITORING PROJECT: BROAD-LINE REGION RADII AND BLACK HOLE MASSES FROM REVERBERATION MAPPING OF Hβ , 2009, The Astrophysical Journal.

[42]  T. O. S. University,et al.  MASS FUNCTIONS OF THE ACTIVE BLACK HOLES IN DISTANT QUASARS FROM THE LARGE BRIGHT QUASAR SURVEY, THE BRIGHT QUASAR SURVEY, AND THE COLOR-SELECTED SAMPLE OF THE SDSS FALL EQUATORIAL STRIPE , 2009, 0904.3348.

[43]  Brandon C. Kelly,et al.  ARE THE VARIATIONS IN QUASAR OPTICAL FLUX DRIVEN BY THERMAL FLUCTUATIONS? , 2009, 0903.5315.

[44]  S. Bianchi,et al.  The XMM–Newton long look of NGC 1365: uncovering of the obscured X-ray source , 2008, 0811.1594.

[45]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[46]  Isaac Shlosman,et al.  The AGN-obscuring Torus: The End of the “Doughnut” Paradigm? , 2006 .

[47]  K. Horne,et al.  Photoionized Hβ emission in NGC 5548: it breathes! , 2005, astro-ph/0510800.

[48]  L. Ho,et al.  Is the Broad-Line Region Clumped or Smooth? Constraints from the Hα Profile in NGC 4395, the Least Luminous Seyfert 1 Galaxy , 2005, astro-ph/0509200.

[49]  B. Peterson,et al.  Reverberation mapping of active galactic nuclei , 2004, astro-ph/0407538.

[50]  Hebrew University,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004, astro-ph/0407297.

[51]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[52]  K. Korista,et al.  What the Optical Recombination Lines Can Tell Us about the Broad-Line Regions of Active Galactic Nuclei , 2004, astro-ph/0402506.

[53]  M. Vestergaard Early Growth and Efficient Accretion of Massive Black Holes at High Redshift , 2003, astro-ph/0309521.

[54]  R. Nichol,et al.  Double-peaked Low-Ionization Emission Lines in Active Galactic Nuclei , 2003, astro-ph/0307357.

[55]  W. Kollatschny Accretion disk wind in the AGN broad-line region: Spectroscopically resolved line profile variations in Mrk 110 ? , 2003, astro-ph/0306389.

[56]  B. Peterson,et al.  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2002, astro-ph/0601303.

[57]  B. Peterson,et al.  Observational Requirements for High‐Fidelity Reverberation Mapping , 2002, astro-ph/0201182.

[58]  Boulder,et al.  Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. II. Effects of Disk Radiation , 2000, astro-ph/0005315.

[59]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999, astro-ph/9911476.

[60]  Bradley M. Peterson,et al.  Keplerian Motion of Broad-Line Region Gas as Evidence for Supermassive Black Holes in Active Galactic Nuclei , 1999, astro-ph/9905382.

[61]  A. Fabian,et al.  Active Galactic Nuclei , 1997 .

[62]  M. Goad,et al.  The Effect of a Variable Anisotropic Continuum Source upon the Broad Emission Line Profiles and Responses , 1996 .

[63]  J. Baldwin,et al.  Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines , 1995, astro-ph/9510080.

[64]  J. Chiang,et al.  Accretion Disk Winds from Active Galactic Nuclei , 1995 .

[65]  A. Robinson On the diversity of the broad emission-line profiles in active galactic nuclei , 1995 .

[66]  M. Malkan,et al.  The broad emission line and continuum variations of Seyfert galaxies. 2: Broad-line region structure and kinematics , 1994 .

[67]  J. Baldwin,et al.  Double-peaked broad line emission from the LINER nucleus of NGC 1097 , 1993 .

[68]  H. Netzer,et al.  Dust in the Narrow-Line Region of Active Galactic Nuclei , 1993 .

[69]  W. Welsh,et al.  Echo images of broad-line regions in active Galactic nuclei , 1991 .

[70]  D. Maoz,et al.  On the emission-line response to continuum variations in the Seyfert galaxy NGC 5548 , 1990 .

[71]  J. Halpern,et al.  Structure of line-emitting accretion disks in active galactic nuclei - Arp 102B , 1989 .

[72]  T. Carroll,et al.  The kinematics of the broad-line emission gas in quasars and Seyfert nuclei , 1982 .

[73]  Christopher F. McKee,et al.  Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. , 1982 .

[74]  C. Foltz,et al.  The dynamics of the broad-line-emitting regions of active galactic nuclei and quasars. I - Broad-line profiles , 1980 .

[75]  H. Netzer,et al.  The emission lines of quasars and similar objects , 1979 .

[76]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae , 1976 .

[77]  Doreen Eichel,et al.  Data Analysis A Bayesian Tutorial , 2016 .

[78]  W. Kollatschny,et al.  The shape of broad-line profiles in active galactic nuclei , 2013 .

[79]  M. Livio,et al.  Planets to cosmology : essential science in the final years of the Hubble Space Telescope : proceedings of the Space Telescope Science Institute Symposium, held in Baltimore, Maryland, May 3-6, 2004 , 2006 .

[80]  M. Vestergaard Determining Central Black Hole Masses in Distant Active Galaxies , 2002 .

[81]  J. Stone,et al.  Dynamics of Line-driven Disk Winds in Active Galactic Nuclei , 2000 .

[82]  J. Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[83]  M. Eracleous,et al.  Doubled-peaked emission lines in active galactic nuclei , 1994 .

[84]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[85]  E. Salpeter,et al.  On the Time Dependence of Emission-Line Strengths from a Photoionized Nebula , 1972 .

[86]  J. Bahcall,et al.  Some Models of the Emission-Line Region of 3c 273 , 1969 .