A thin Si nanowire network anode for high volumetric capacity and long-life lithium-ion batteries

[1]  Guoyu Qian,et al.  Upcycling of photovoltaic silicon waste into ultrahigh areal-loaded silicon nanowire electrodes through electrothermal shock , 2022, Energy Storage Materials.

[2]  Jun Wu,et al.  Recent Progress and Future Perspective on Practical Silicon Anode-Based Lithium Ion Batteries , 2022, Energy Storage Materials.

[3]  Jinhyuk Lee,et al.  Toward high-energy Mn-based disordered-rocksalt Li-ion cathodes , 2021, Joule.

[4]  S. Shi,et al.  Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries , 2021, Journal of Energy Chemistry.

[5]  Ibrahim Saana Amiinu,et al.  Dense Silicon Nanowire Networks Grown on a Stainless‐Steel Fiber Cloth: A Flexible and Robust Anode for Lithium‐Ion Batteries , 2021, Advanced materials.

[6]  Yida Deng,et al.  Millisecond Conversion of Photovoltaic Silicon Waste to Binder‐Free High Silicon Content Nanowires Electrodes , 2021, Advanced Energy Materials.

[7]  Ji‐Guang Zhang,et al.  Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading , 2021, Nature Nanotechnology.

[8]  Xiaodong Chen,et al.  Deep Cycling for High‐Capacity Li‐Ion Batteries , 2021, Advanced materials.

[9]  V. Goodship,et al.  A review of current collectors for lithium-ion batteries , 2021, Journal of Power Sources.

[10]  Ibrahim Saana Amiinu,et al.  Direct Growth of Si, Ge, and Si-Ge Heterostructure Nanowires Using Electroplated Zn: An Inexpensive Seeding Technique for Li-Ion Alloying Anodes. , 2021, Small.

[11]  Zheng Liang,et al.  A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards , 2020, Journal of Energy Chemistry.

[12]  Bin Huang,et al.  LiMn2O4 Cathode Materials with Excellent Performances by Synergistic Enhancement of Double-Cation (Na+, Mg2+) Doping and 3DG Coating for Power Lithium-Ion Batteries , 2020 .

[13]  Micheál D. Scanlon,et al.  Evolution of Hierarchically Layered Cu-Rich Silicide Nanoarchitectures , 2020 .

[14]  Praveen Kumar,et al.  A Scalable Silicon Nanowires-Grown-On-Graphite Composite for High Energy Lithium Batteries. , 2020, ACS nano.

[15]  K. Müllen,et al.  Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation , 2020, Nature Communications.

[16]  K. Ryan,et al.  A Copper Silicide Nanofoam Current Collector for Directly Grown Si Nanowire Networks and their Application as Lithium‐Ion Anodes , 2020, Advanced Functional Materials.

[17]  Feixiang Wu,et al.  Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries , 2020 .

[18]  K. Ryan,et al.  Copper Silicide Nanowires as Hosts for Amorphous Si Deposition as a Route to Produce High Capacity Lithium-ion Battery Anodes. , 2019, Nano letters.

[19]  Yi Cui,et al.  Nanowires for Electrochemical Energy Storage. , 2019, Chemical reviews.

[20]  J. Coleman,et al.  High areal capacity battery electrodes enabled by segregated nanotube networks , 2019, Nature Energy.

[21]  João Coelho,et al.  Quantifying the factors limiting rate performance in battery electrodes , 2018, Nature Communications.

[22]  K. Ryan,et al.  Axial Si-Ge Heterostructure Nanowires as Lithium-Ion Battery Anodes. , 2018, Nano letters.

[23]  Zhong Lin Wang,et al.  Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries. , 2018, ACS nano.

[24]  C. Cao,et al.  Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode. , 2018, Small.

[25]  R. Bhagat,et al.  Electrochemical Evaluation and Phase-related Impedance Studies on Silicon–Few Layer Graphene (FLG) Composite Electrode Systems , 2018, Scientific Reports.

[26]  Hao Jiang,et al.  Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design , 2017, Advanced science.

[27]  Jaephil Cho,et al.  Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries , 2017 .

[28]  Ji‐Guang Zhang,et al.  Li‐ and Mn‐Rich Cathode Materials: Challenges to Commercialization , 2017 .

[29]  K. Ryan,et al.  Nanowire Heterostructures Comprising Germanium Stems and Silicon Branches as High-Capacity Li-Ion Anodes with Tunable Rate Capability. , 2015, ACS nano.

[30]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[31]  Gleb Yushin,et al.  High‐Capacity Anode Materials for Lithium‐Ion Batteries: Choice of Elements and Structures for Active Particles , 2014 .

[32]  B. Korgel,et al.  Lithium ion battery peformance of silicon nanowires with carbon skin. , 2014, ACS nano.

[33]  Jing Ning,et al.  High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering. , 2013, Nano letters.

[34]  Qing Zhang,et al.  High performance lithium ion battery anodes based on carbon nanotube–silicon core–shell nanowires with controlled morphology , 2013 .

[35]  K. Ryan,et al.  Growth of Crystalline Copper Silicide Nanowires in High Yield within a High Boiling Point Solvent System , 2012 .

[36]  Alexandru Vlad,et al.  Roll up nanowire battery from silicon chips , 2012, Proceedings of the National Academy of Sciences.

[37]  Yi Cui,et al.  Prelithiated silicon nanowires as an anode for lithium ion batteries. , 2011, ACS nano.

[38]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[39]  Margret Wohlfahrt-Mehrens,et al.  Aging mechanisms of lithium cathode materials , 2004 .

[40]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .