Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics

Abstract Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions. It also provides step by step guides to modeling physical sources, lum...

[1]  Omar M. Ramahi,et al.  The concurrent complementary operators method for FDTD mesh truncation , 1998 .

[2]  Fenghua Zhen,et al.  Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method , 2000 .

[3]  Jiayuan Fang,et al.  Numerical errors in the computation of impedances by the FDTD method and ways to eliminate them , 1995 .

[4]  Orhan Arikan,et al.  An efficient and accurate technique for the incident-wave excitations in the FDTD method , 1998 .

[5]  Allen Taflove,et al.  A Novel Method to Analyze Electromagnetic Scattering of Complex Objects , 1982, IEEE Transactions on Electromagnetic Compatibility.

[6]  Craig A. Grimes,et al.  Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption , 2007 .

[7]  Raj Mittra,et al.  Efficient representation of induced currents on large scatterers using the generalized pencil of function method , 1996 .

[8]  A. Taflove,et al.  Computation of the Electromagnetic Fields and Induced Temperatures Within a Model of the Microwave-Irradiated Human Eye , 1975 .

[9]  C.G. Parini,et al.  Discrete Green's function formulation of the FDTD method and its application in antenna modeling , 2005, IEEE Transactions on Antennas and Propagation.

[10]  Jian-Ming Jin,et al.  Time-domain finite element modeling of dispersive media , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[11]  J. Hesthaven,et al.  High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  Clive Parini,et al.  Discrete Green's function formulation of FDTD method for electromagnetic modelling , 1999 .

[13]  K. Kurokawa,et al.  Power Waves and the Scattering Matrix , 1965 .

[14]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[15]  İlker R. Çapoğlu,et al.  Techniques for handling multilayered media in the FDTD method , 2007 .

[16]  R. Holland THREDE: A Free-Field EMP Coupling and Scattering Code , 1977, IEEE Transactions on Nuclear Science.

[17]  T. Sarkar,et al.  Using the matrix pencil method to estimate the parameters of a sum of complex exponentials , 1995 .

[18]  Richard W. Ziolkowski,et al.  Applications of the nonlinear finite difference time domain (NL‐FDTD) method to pulse propagation in nonlinear media: Self‐focusing and linear‐nonlinear interfaces , 1993 .

[19]  A. Taflove,et al.  Radar Cross Section of General Three-Dimensional Scatterers , 1983, IEEE Transactions on Electromagnetic Compatibility.

[20]  R. Mittra,et al.  A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects , 1997 .

[21]  C. Longmire,et al.  State of the Art in IEMP and SGEMP Calculations , 1975, IEEE Transactions on Nuclear Science.

[22]  T. Shibata,et al.  Fullwave analysis of picosecond photoconductive switches , 1990 .

[23]  Young-Wan Choi,et al.  Finite-Difference Time-Domain (FDTD) Model for Traveling-Wave Photodetectors , 2009 .

[24]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[25]  A. Taflove,et al.  Use of the finite-difference time-domain method for calculating EM absorption in man models , 1988, IEEE Transactions on Biomedical Engineering.

[26]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[27]  G.S. Smith,et al.  A Total-Field/Scattered-Field Plane-Wave Source for the FDTD Analysis of Layered Media , 2008, IEEE Transactions on Antennas and Propagation.

[28]  Uğur Oğuz Reducing the Dispersion Errors of the Finite-Difference Time-Domain Method for Multifrequency Plane-Wave Excitations , 2003 .

[29]  Weng Cho Chew,et al.  Application of perfectly matched layers to the transient modeling of subsurface EM problems , 1997 .

[30]  Glenn S. Smith,et al.  The efficient modeling of thin material sheets in the finite-difference time-domain (FDTD) method , 1992 .

[31]  Qing Huo Liu,et al.  A 3-D Enlarged Cell Technique (ECT) for the Conformal FDTD Method , 2008, IEEE Transactions on Antennas and Propagation.

[32]  A Taflove,et al.  Direct time integration of Maxwell's equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons. , 1992, Optics letters.

[33]  K. Michalski,et al.  Multilayered media Green's functions in integral equation formulations , 1997 .

[34]  Allen Taflove,et al.  Finite-difference time-domain modeling of curved surfaces (EM scattering) , 1992 .

[35]  C. Guiffaut,et al.  A perfect wideband plane wave injector for FDTD method , 2000, IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C.

[36]  Yan-Nan Jiang,et al.  Analysis of TF-SF Boundary for 2D-FDTD with Plane P-Wave Propagation in Layered Dispersive and Lossy Media , 2008 .

[37]  P. Kosmas,et al.  FDTD simulation of TE and TM plane waves at nonzero incidence in arbitrary Layered media , 2005, IEEE Transactions on Antennas and Propagation.

[38]  Yang Hao,et al.  FDTD analysis of the optical black hole , 2010 .

[39]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[40]  Allen Taflove,et al.  Application of the Finite-Difference Time-Domain Method to Sinusoidal Steady-State Electromagnetic-Penetration Problems , 1980, IEEE Transactions on Electromagnetic Compatibility.

[41]  Yuan Xu,et al.  Modular Fast Direct Electromagnetic Analysis Using Local-Global Solution Modes , 2008, IEEE Transactions on Antennas and Propagation.

[42]  James G. Maloney,et al.  A comparison of methods for modeling electrically thin dielectric and conducting sheets in the finite-difference time-domain (FDTD) method , 1993 .

[43]  O. Gandhi Electromagnetic fields: human safety issues. , 2002, Annual review of biomedical engineering.

[44]  C. Furse A survey of phased arrays for medical applications , 2006 .

[45]  V. Shankar,et al.  A Time-Domain, Finite-Volume Treatment for the Maxwell Equations , 1990 .

[46]  Jean-Pierre Bérenger,et al.  Perfectly Matched Layer (PML) for Computational Electromagnetics , 2007, PML for Computational Electromagnetics.

[47]  T. I. Kosmanis,et al.  A systematic conformal finite-difference time-domain (FDTD) technique for the simulation of arbitrarily curved interfaces between dielectrics , 2002 .

[48]  J. Schneider,et al.  A finite-difference time-domain method applied to anisotropic material , 1993 .

[49]  J. D. Shea,et al.  Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique. , 2010, Medical physics.

[50]  S. Gedney An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices , 1996 .

[51]  R. Mittra,et al.  A conformal finite difference time domain technique for modeling curved dielectric surfaces , 2001, IEEE Microwave and Wireless Components Letters.

[52]  J.-P. Wrenger,et al.  Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs , 2002 .

[53]  R. B. Standler,et al.  A frequency-dependent finite-difference time-domain formulation for dispersive materials , 1990 .

[54]  A Taflove,et al.  Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses. , 1991, Optics letters.

[55]  W. Scott,et al.  Accurate computation of the radiation from simple antennas using the finite-difference time-domain method , 1989, Digest on Antennas and Propagation Society International Symposium.

[56]  Raphael Kastner,et al.  Closed form FDTD-compatible Green's function based on combinatorics , 2007, J. Comput. Phys..

[57]  A. Taflove,et al.  Calculation and experimental validation of induced currents on coupled wires in an arbitrary shaped cavity , 1987 .

[58]  Raj Mittra,et al.  High-Performance Conformal FDTD Techniques , 2010, IEEE Microwave Magazine.

[59]  Allen Taflove,et al.  Photonic nanojet-enabled optical data storage. , 2008, Optics express.

[60]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[61]  Xiao-Juan Hu,et al.  STUDY ON CONFORMAL FDTD FOR ELECTROMAGNETIC SCATTERING BY TARGETS WITH THIN COATING , 2008 .

[62]  L. D. Bacon,et al.  Evaluation of a thin-slot formalism for finite-difference time-domain electromagnetics codes , 1988 .

[63]  Jin-Fa Lee,et al.  A perfectly matched anisotropic absorber for use as an absorbing boundary condition , 1995 .

[64]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[65]  Raj Mittra,et al.  Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers , 1996 .

[66]  A. Taflove,et al.  Finite-difference time-domain model of lasing action in a four-level two-electron atomic system. , 2004, Optics express.

[67]  Andrew K. Dunn,et al.  Three-dimensional computation of light scattering from cells , 1996 .

[68]  Stoyan Tanev,et al.  Flow cytometry with gold nanoparticles and their clusters as scattering contrast agents: FDTD simulation of light–cell interaction , 2009, Journal of biophotonics.

[69]  A. Taflove,et al.  Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[70]  R. Higdon Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation , 1986 .

[71]  Stephen D. Gedney,et al.  Time-domain analysis of periodic structures at oblique incidence: orthogonal and nonorthogonal FDTD implementations , 1998 .

[72]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[73]  A. Taflove,et al.  Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed-focus and antenna-array sensors , 1998, IEEE Transactions on Biomedical Engineering.

[74]  F. Teixeira Time-Domain Finite-Difference and Finite-Element Methods for Maxwell Equations in Complex Media , 2008, IEEE Transactions on Antennas and Propagation.

[75]  James G. Maloney,et al.  The use of surface impedance concepts in the finite-difference time-domain method , 1992 .

[76]  N. Kuster,et al.  A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion , 2006, IEEE Transactions on Antennas and Propagation.

[77]  C. Durney,et al.  Extending the two-dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements , 1992 .

[78]  A. Taflove,et al.  The use of SPICE lumped circuits as sub-grid models for FDTD analysis , 1994, IEEE Microwave and Guided Wave Letters.

[79]  Endre Süli,et al.  Error estimates for Yee's method on non-uniform grids , 1994 .

[80]  D. M. Sheen,et al.  Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits , 1990 .

[81]  R. Mittra,et al.  A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators , 1999 .

[82]  James G. Maloney,et al.  A simple FDTD model for transient excitation of antennas by transmission lines , 1994 .

[83]  D. Merewether,et al.  On Implementing a Numeric Huygen's Source Scheme in a Finite Difference Program to Illuminate Scattering Bodies , 1980, IEEE Transactions on Nuclear Science.

[84]  J.B. Schneider,et al.  On the Use of the Geometric Mean in FDTD Near-to-Far-Field Transformations , 2007, IEEE Transactions on Antennas and Propagation.

[85]  Levent Gürel,et al.  Three-dimensional FDTD modeling of a ground-penetrating radar , 2000, IEEE Trans. Geosci. Remote. Sens..

[86]  R. Holland Finite-Difference Solution of Maxwell's Equations in Generalized Nonorthogonal Coordinates , 1983, IEEE Transactions on Nuclear Science.

[87]  Stephen D. Gedney,et al.  Finite-difference time-domain analysis of microwave circuit devices on high performance vector/parallel computers , 1995 .

[88]  Allen Taflove,et al.  High-Density Optical Data Storage Enabled by the Photonic Nanojet from a Dielectric Microsphere , 2009 .

[89]  Allen Taflove,et al.  Electrokinetic effect of the Loma Prieta earthquake calculated by an entire-Earth FDTD solution of Maxwell's equations , 2005 .

[90]  Raj Mittra,et al.  Comparison and evaluation of boundary conditions for the absorption of guided waves in an FDTD simulation , 1992, IEEE Microwave and Guided Wave Letters.

[91]  Raj Mittra,et al.  A conformal FDTD software package modeling antennas and microstrip circuit components , 2000 .

[92]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[93]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[94]  A. Taflove,et al.  Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: design of an antenna-array element , 1999 .

[95]  D. Werner,et al.  Modeling of transverse propagation through a uniaxial bianisotropic medium using the finite-difference time-domain technique , 2004, IEEE Transactions on Antennas and Propagation.

[96]  A. Taflove,et al.  Three-dimensional CAD-based mesh generator for the dey-mittra conformal FDTD algorithm , 2004, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[97]  Stephen D. Gedney,et al.  An Anisotropic PML Absorbing Media for the FDTD Simulation of Fields in Lossy and Dispersive Media , 1996 .

[98]  R. Mittra,et al.  Computational Methods for Electromagnetics , 1997 .

[99]  John R. Cary,et al.  A stable FDTD algorithm for non-diagonal, anisotropic dielectrics , 2007, J. Comput. Phys..

[100]  Paul M. Meaney,et al.  Conformal microwave imaging for breast cancer detection , 2003 .

[101]  M. Potter,et al.  Optimized Analytic Field Propagator (O-AFP) for Plane Wave Injection in FDTD Simulations , 2010, IEEE Transactions on Antennas and Propagation.

[102]  M. Kivikoski,et al.  An improved thin-wire model for FDTD , 2002 .

[103]  S. Gedney,et al.  An Auxiliary Differential Equation Formulation for the Complex-Frequency Shifted PML , 2010, IEEE Transactions on Antennas and Propagation.

[104]  J. Bérenger,et al.  Application of the CFS PML to the absorption of evanescent waves in waveguides , 2002, IEEE Microwave and Wireless Components Letters.

[105]  Raymond J. Luebbers,et al.  FDTD for Nth-order dispersive media , 1992 .

[106]  Seng-Tiong Ho,et al.  FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators , 1997 .

[107]  Yang Hao,et al.  Modelling of Wave Propagation in Wire Media Using Spatially Dispersive Finite-Difference Time-Domain Method: Numerical Aspects , 2006, IEEE Transactions on Antennas and Propagation.

[108]  S. Gedney,et al.  Numerical stability of nonorthogonal FDTD methods , 2000 .

[109]  Allen Taflove,et al.  Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. , 2005, Optics express.

[110]  S. Gedney,et al.  Scaled CFS-PML: it is more robust, more accurate, more efficient, and simple to implement. Why aren't you using it? , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[111]  Raphael Kastner,et al.  The time-domain discrete Green's function method (GFM) characterizing the FDTD grid boundary , 2001 .

[112]  F. Hu Absorbing Boundary Conditions , 2004 .

[113]  E. Süli,et al.  A convergence analysis of Yee's scheme on nonuniform grids , 1994 .

[114]  O. Ramahi The complementary operators method in FDTD simulations , 1997 .

[115]  Masao Taki,et al.  An improved FDTD model for the feeding gap of a thin-wire antenna , 1998 .

[116]  L. Trefethen,et al.  Wide-angle one-way wave equations. , 1988, The Journal of the Acoustical Society of America.

[117]  N. Madsen Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids , 1995 .

[118]  M. E. Watts Perfect Plane-Wave Injection into a Finite FDTD Domain through Teleportation of Fields , 2003 .

[119]  Tatsuo Itoh,et al.  FDTD analysis of dielectric resonators with curved surfaces , 1997 .

[120]  S. Gedney,et al.  On the long-time behavior of unsplit perfectly matched layers , 2004, IEEE Transactions on Antennas and Propagation.

[121]  Soon-Hong Kwon,et al.  Electrically Driven Single-Cell Photonic Crystal Laser , 2004, Science.

[122]  G. Arfken Mathematical Methods for Physicists , 1967 .

[123]  R. Ziolkowski,et al.  Wave propagation in media having negative permittivity and permeability. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[124]  Richard W. Ziolkowski,et al.  A Three-Dimensional Modified Finite Volume Technique for Maxwell's Equations , 1990 .

[125]  Jian-Ming Jin,et al.  Conformal PML-FDTD schemes for electromagnetic field simulations: a dynamic stability study , 2001 .

[126]  Richard Holland,et al.  Finite-Difference Analysis of EMP Coupling to Thin Struts and Wires , 1981, IEEE Transactions on Electromagnetic Compatibility.

[127]  Xiao-Peng Liang,et al.  Modeling of cylindrical dielectric resonators in rectangular waveguides and cavities , 1993, 1993 IEEE MTT-S International Microwave Symposium Digest.

[128]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[129]  Richard Holland,et al.  Implementation of the Thin-Slot Formalism in the Finite-Difference EMP Code THREDII , 1981, IEEE Transactions on Nuclear Science.

[130]  Robert L. Higdon,et al.  Numerical absorbing boundary conditions for the wave equation , 1987 .

[131]  Sai T. Chu,et al.  A finite-difference time-domain method for the design and analysis of guided-wave optical structures , 1989 .

[132]  A Taflove,et al.  Waveguide-coupled AlGaAs / GaAs microcavity ring and disk resonators with high f inesse and 21.6-nm f ree spectral range. , 1997, Optics letters.

[133]  Glenn S. Smith,et al.  A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment , 1996, IEEE Trans. Geosci. Remote. Sens..

[134]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[135]  Adam Wax,et al.  Biomedical Applications of Light Scattering , 2009 .

[136]  T. Itoh,et al.  Modeling of nonlinear active regions with the FDTD method , 1993, IEEE Microwave and Guided Wave Letters.

[137]  B. Beker,et al.  Detailed FD-TD analysis of electromagnetic fields penetrating narrow slots and lapped joints in thick conducting screens , 1988 .

[138]  Antonio Orlandi,et al.  FDTD analysis of lossy, multiconductor transmission lines terminated in arbitrary loads , 1996 .

[139]  A. Taflove,et al.  Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations , 1975 .