Convergent evolution of noxious heat sensing by TRPA5, a novel class of heat sensor in Rhodnius prolixus

Insects are ectotherms, and as such, rely on a diverse repertoire of thermoreceptors to monitor environmental temperature and control behavioral thermoregulation. Here, we use structural, phylogenetic, genetic, and functional analyses to show that TRPA5 genes, widespread across numerous insect orders, encode a novel class of noxious heat receptors. We show that in the triatomine bug Rhodnius prolixus, the primary vector of Chagas disease, Rp-TRPA52 differs biophysically and structurally from noxious thermoTRPAs previously described in insects. This includes key changes in the ankyrin repeat domain and the selectivity filter of the channel. In vitro, we find evidence that the homo-tetrameric channel is not activated by voltage, but displays high thermosensitivity with an enthalpy change (ΔH) of 72 kcal/mol associated with the channel activation, with a Q10 = 25 and T°half = 58.6°C. Structural analyses reveal parallels in the overall ion channel architecture between fruit fly TRPA1 and Rp-TRPA52; however, functional properties and expression patterns indicate that the role of Rp-TRPA52 is more similar to that of Pyrexia noxious heat receptors found in fruit flies. Pyrexia genes have been lost in true bugs, and our findings suggest that the rapidly evolving insect TRPA gene family has given rise to an independent evolutionary origin of a molecular transducer that is responsive to noxious thermal stimuli.

[1]  Lin Sun,et al.  Molecular architecture and gating mechanisms of the Drosophila TRPA1 channel , 2023, Cell Discovery.

[2]  N. Pierce,et al.  Molecular advances to study the function, evolution and spectral tuning of arthropod visual opsins , 2022, Philosophical Transactions of the Royal Society B.

[3]  D. Julius,et al.  Sensory TRP Channels in Three Dimensions. , 2022, Annual review of biochemistry.

[4]  D. Hassabis,et al.  AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models , 2021, Nucleic Acids Res..

[5]  S. Ovchinnikov,et al.  ColabFold: making protein folding accessible to all , 2022, Nature Methods.

[6]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[7]  X. Z. S. Xu,et al.  Temperature Sensation: From Molecular Thermosensors to Neural Circuits and Coding Principles. , 2020, Annual review of physiology.

[8]  D. Julius,et al.  Irritant-evoked activation and calcium modulation of the TRPA1 receptor , 2020, Nature.

[9]  G. D. Bernard,et al.  The evolution of red colour vision is linked to coordinated rhodopsin tuning in lycaenid butterflies , 2020, bioRxiv.

[10]  Guangchuang Yu,et al.  Using ggtree to Visualize Data on Tree‐Like Structures , 2020, Current protocols in bioinformatics.

[11]  Gary D. Bernard,et al.  Physical and behavioral adaptations to prevent overheating of the living wings of butterflies , 2020, Nature Communications.

[12]  W. de Souza,et al.  Silencing of RpATG8 impairs the biogenesis of maternal autophagosomes in vitellogenic oocytes, but does not interrupt follicular atresia in the insect vector Rhodnius prolixus , 2020, PLoS neglected tropical diseases.

[13]  Liisa Holm,et al.  DALI and the persistence of protein shape , 2019, Protein science : a publication of the Protein Society.

[14]  Steven L Salzberg,et al.  Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype , 2019, Nature Biotechnology.

[15]  A. Torres-Larios,et al.  The contribution of the ankyrin repeat domain of TRPV1 as a thermal module , 2019, bioRxiv.

[16]  J. M. Latorre-Estivalis,et al.  Molecular bases of sensory processes in kissing bugs, vectors of Chagas disease. , 2019, Current Opinion in Insect Science.

[17]  J. M. Latorre-Estivalis,et al.  Transcriptomics supports local sensory regulation in the antenna of the kissing-bug Rhodnius prolixus , 2019, BMC Genomics.

[18]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[19]  Giulia Antonazzo,et al.  FlyBase 2.0: the next generation , 2018, Nucleic Acids Res..

[20]  Yasutsugu Suzuki,et al.  Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing , 2018, Nature Communications.

[21]  C. Wisnivesky-Colli,et al.  DataTri, a database of American triatomine species occurrence , 2018, Scientific Data.

[22]  M. Tominaga,et al.  HsTRPA of the Red Imported Fire Ant, Solenopsis invicta, Functions as a Nocisensor and Uncovers the Evolutionary Plasticity of HsTRPA Channels , 2018, eNeuro.

[23]  R. Latorre,et al.  Thermally activated TRP channels: molecular sensors for temperature detection , 2018, Physical biology.

[24]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[25]  Beiying Liu,et al.  Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3 , 2017, Proceedings of the National Academy of Sciences.

[26]  R. Barrozo,et al.  An inside look at the sensory biology of triatomines. , 2017, Journal of insect physiology.

[27]  Timothy L. Tickle,et al.  A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors. , 2017, Cell reports.

[28]  L. O. Gonçalves,et al.  The molecular sensory machinery of a Chagas disease vector: expression changes through imaginal moult and sexually dimorphic features , 2017, Scientific Reports.

[29]  A. Bassoli,et al.  TRPA5, an Ankyrin Subfamily Insect TRP Channel, is Expressed in Antennae of Cydia pomonella (Lepidoptera: Tortricidae) in Multiple Splice Variants , 2016, Journal of insect science.

[30]  Arndt von Haeseler,et al.  W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis , 2016, Nucleic Acids Res..

[31]  Mark D. Robinson,et al.  Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage , 2016, Genome Biology.

[32]  Fei Li,et al.  InsectBase: a resource for insect genomes and transcriptomes , 2015, Nucleic Acids Res..

[33]  Christine G. Elsik,et al.  Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine , 2015, Nucleic Acids Res..

[34]  Claudia M. A. Carareto,et al.  Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection , 2015, Proceedings of the National Academy of Sciences.

[35]  Chung-Hui Yang,et al.  Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2 , 2015, Proceedings of the National Academy of Sciences.

[36]  Paula F. Zermoglio,et al.  Thermosensation and the TRPV channel in Rhodnius prolixus. , 2015, Journal of insect physiology.

[37]  Wenjun Zheng,et al.  A combined coarse-grained and all-atom simulation of TRPV1 channel gating and heat activation , 2015, The Journal of general physiology.

[38]  D. Julius,et al.  Structure of the TRPA1 ion channel suggests regulatory mechanisms , 2015, Nature.

[39]  T. Kadowaki,et al.  Evolution of TRP channels inferred by their classification in diverse animal species. , 2015, Molecular phylogenetics and evolution.

[40]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[41]  Elena O. Gracheva,et al.  Species-specific temperature sensitivity of TRPA1 , 2015, Temperature.

[42]  Marc Gershow,et al.  Sensory determinants of behavioral dynamics in Drosophila thermotaxis , 2014, Proceedings of the National Academy of Sciences.

[43]  Lavanya Moparthi,et al.  Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain , 2014, Proceedings of the National Academy of Sciences.

[44]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[45]  Gary Moore,et al.  The i5k Workspace@NAL—enabling genomic data access, visualization and curation of arthropod genomes , 2014, Nucleic Acids Res..

[46]  H. Tichy,et al.  Infrared detection without specialized infrared receptors in the bloodsucking bug Rhodnius prolixus. , 2014, Journal of neurophysiology.

[47]  Bernd Nilius,et al.  Peripheral thermosensation in mammals , 2014, Nature Reviews Neuroscience.

[48]  H. Tichy,et al.  Differential effects of ambient temperature on warm cell responses to infrared radiation in the bloodsucking bug Rhodnius prolixus. , 2014, Journal of neurophysiology.

[49]  Monica C Munoz-Torres,et al.  Web Apollo: a web-based genomic annotation editing platform , 2013, Genome Biology.

[50]  C. Montell,et al.  Drosophila TRP channels and animal behavior. , 2013, Life sciences.

[51]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[52]  Songnian Hu,et al.  EvolView, an online tool for visualizing, annotating and managing phylogenetic trees , 2012, Nucleic Acids Res..

[53]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[54]  Richard Y. Hwang,et al.  Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel. , 2012, Cell reports.

[55]  Lina Ni,et al.  Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila , 2011, Nature.

[56]  D. Julius,et al.  Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli , 2011, Proceedings of the National Academy of Sciences.

[57]  P. Garrity,et al.  TrpA1 Regulates Thermal Nociception in Drosophila , 2011, PloS one.

[58]  Nicholas T. Ingolia,et al.  Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats , 2011, Nature.

[59]  Bernd Nilius,et al.  TRPM3 Is a Nociceptor Channel Involved in the Detection of Noxious Heat , 2011, Neuron.

[60]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[61]  Aravinthan D. T. Samuel,et al.  Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila. , 2010, Genes & development.

[62]  Jing Yao,et al.  Kinetic and energetic analysis of thermally activated TRPV1 channels. , 2010, Biophysical journal.

[63]  M. Tominaga,et al.  Honey Bee Thermal/Chemical Sensor, AmHsTRPA, Reveals Neofunctionalization and Loss of Transient Receptor Potential Channel Genes , 2010, The Journal of Neuroscience.

[64]  Julie Clayton,et al.  Chagas disease 101 , 2010, Nature.

[65]  J. Coura,et al.  Chagas disease: a new worldwide challenge , 2010, Nature.

[66]  M. Tominaga,et al.  Evolutionary conservation and changes in insect TRP channels , 2009, BMC Evolutionary Biology.

[67]  W. Takken,et al.  Anopheles gambiae TRPA1 is a heat‐activated channel expressed in thermosensitive sensilla of female antennae , 2009, The European journal of neuroscience.

[68]  Jing Yao,et al.  Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies. , 2009, Biophysical journal.

[69]  P. Guerenstein,et al.  Host-seeking: How triatomines acquire and make use of information to find blood. , 2009, Acta tropica.

[70]  Stefan R. Pulver,et al.  An internal thermal sensor controlling temperature preference in Drosophila , 2008, Nature.

[71]  R. Gaudet A primer on ankyrin repeat function in TRP channels and beyond. , 2008, Molecular bioSystems.

[72]  M. Welsh,et al.  Drosophila hygrosensation requires the TRP channels water witch and nanchung , 2007, Nature.

[73]  R. Latorre,et al.  ThermoTRP channels as modular proteins with allosteric gating. , 2007, Cell calcium.

[74]  M. Lorenzo,et al.  Do Haematophagous Bugs Assess Skin Surface Temperature to Detect Blood Vessels? , 2007, PloS one.

[75]  D. McKemy,et al.  Temperature sensing across species , 2007, Pflügers Archiv - European Journal of Physiology.

[76]  B. Nilius,et al.  Sensing with TRP channels , 2005, Nature chemical biology.

[77]  David E. Clapham,et al.  TRP channels as cellular sensors , 2003, Nature.

[78]  Beiying Liu,et al.  Thermodynamics of heat activation of single capsaicin ion channels VR1. , 2003, Biophysical journal.

[79]  Gilles Laurent,et al.  painless, a Drosophila Gene Essential for Nociception , 2003, Cell.

[80]  P. Anand,et al.  TRPV3 is a temperature-sensitive vanilloid receptor-like protein , 2002, Nature.

[81]  Hofmann,et al.  The ability of Rhodnius prolixus (Hemiptera; Reduviidae) to approach a thermal source solely by its infrared radiation. , 2000, Journal of insect physiology.

[82]  D. Julius,et al.  A capsaicin-receptor homologue with a high threshold for noxious heat , 1999, Nature.

[83]  D. Julius,et al.  The capsaicin receptor: a heat-activated ion channel in the pain pathway , 1997, Nature.

[84]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[85]  C. Lazzari,et al.  THE ROLE OF THE ANTENNAE IN TRIATOMA INFESTANS : ORIENTATION TOWARDS THERMAL SOURCES , 1996 .

[86]  J. Núñez,et al.  Blood temperature and feeding behavior in Triatoma infestans (Heteroptera: Reduviidae) , 1989 .

[87]  V. Wigglesworth,et al.  The Function of the Antennae in Rhodnius prolixus (Hemiptera) and the Mechanism of Orientation to the Host , 1934 .

[88]  D. Julius,et al.  The vanilloid receptor: a molecular gateway to the pain pathway. , 2001, Annual review of neuroscience.

[89]  J. Núñez,et al.  The response to radiant heat and the estimation of the temperature of distant sources in Triatoma infestans , 1989 .