OPTIMAL IMPULSIVE INTERCEPT WITH LOW-THRUST RENDEZVOUS RETURN

Primer vector theory is used to investigate a specific class of minimum-fuel spacecraft trajectory problems in which high- and low-thrust propulsion systems are utilized sequentially. The problem considered assumes a spacecraft initially on-station in an established orbit about the Earth. It is desired to intercept a predetermined position in space in a timely manner for collision avoidance or platform surveillance, using an optimal high-thrust program. The spacecraft then returns to the original orbit station using optimal low-thrust propulsion. Fixed-time minimum-fuel solutions are obtained using the Clohessy-Wiltshire linearized dynamic model. In the time-open case, the optimal final time is unbounded. For this case a composite performance index involving both fuel consumption and the final time is minimized to obtain optimal finite-time solutions.

[1]  Thomas Carter,et al.  Optimal power-limited rendezvous for linearized equations of motion , 1994 .

[2]  John E. Prussing,et al.  Optimal four-impulse fixed-time rendezvous in the vicinity of a circular orbit. , 1969 .

[3]  J. Breakwell The Optimization of Trajectories , 1959 .

[4]  Derek F Lawden,et al.  Optimal trajectories for space navigation , 1964 .

[5]  M. Handelsman,et al.  Primer Vector on Fixed-Time Impulsive Trajectories , 1967 .

[6]  B. H. Billik,et al.  Some optimal low-acceleration rendezvous maneuvers , 1964 .

[7]  Yuri Ulybyshev,et al.  Comment on "Optimal Impulsive Intercept with Low-Thrust Rendezvous Return" , 1994 .

[8]  C. G. Sauer,et al.  OPTIMUM THRUST PROGRAMS FOR POWER-LIMITED PROPULSION SYSTEMS , 1961 .

[9]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[10]  Thomas Carter Effects of Propellant Mass Loss on Fuel-Optimal Rendezvous Near Keplerian Orbit , 1989 .

[11]  H. K. Hinz,et al.  OPTIMAL LOW-THRUST NEAR-CIRCULAR ORBITAL TRANSFER , 1963 .

[12]  John E. Prussing,et al.  Optimal Multiple-Impulse Satellite Evasive Maneuvers , 1994 .

[13]  Thomas Carter,et al.  Fuel-optimal maneuvers of a spacecraft relative to a point in circular orbit , 1984 .

[14]  John E. Prussing,et al.  Optimal multiple-impulse time-fixed rendezvous between circular orbits , 1984 .

[15]  F. Gobetz Errata: "Optimal Variable-Thrust Transfer of a Power-Limited Rocket between Neighboring Circular Orbits" , 1964 .

[16]  T. N. Edelbaum A general solution for minimum impulse transfers in the near vicinity of a circular orbit , 1967 .

[17]  Joseph W. Widhalm,et al.  Minimum impulse orbital evasive maneuvers , 1989 .

[18]  John E. Prussing,et al.  Optimal two- and three-impulse fixed-time rendezvous in the vicinityof a circular orbit , 1970 .

[19]  J. W. Widhalm,et al.  Optimal in-plane orbital evasive maneuvers using continuous thrust propulsion , 1991 .

[20]  D. J. Jezewski,et al.  An efficient method for calculating optimal free-space n-impulse trajectories. , 1968 .