A robust method for tropopause altitude identification using GPS radio occultation data

[1] A robust method to determine the tropopause altitude directly from GPS Radio Occultation (RO) measurements of bending angle is presented. An objective covariance transform method is applied to identify transitions in a bending angle profile. The tropopause is identified by the maximum in the convolution of the natural logarithm of an observed bending angle profile with a gradient window function. Identification of the tropopause from bending angles is of particular value since they are directly derived from climate benchmark observations. This method avoids additional RO data processing and assumptions to derive parameters such as dry temperature, and use of subjective tropopause identification criteria. The RO tropopause altitude is compared with lapse rate and cold point criteria using dry temperatures and radiosonde temperature profiles. A longer-term tropopause altitude analysis for May to November 2008 using the RO bending angle method shows good agreement with tropopause altitudes computed from dry temperature parameters.

[1]  D. Nath,et al.  Identification of tropopause using bending angle profile from GPS radio occultation (RO): A radio tropopause , 2007 .

[2]  S. B. Healy,et al.  Monitoring twenty‐first century climate using GPS radio occultation bending angles , 2008 .

[3]  Klaus P. Hoinka,et al.  Statistics of the Global Tropopause Pressure , 1998 .

[4]  N. Gamage,et al.  Detection and Analysis of Microfronts and Associated Coherent Events Using Localized Transforms , 1993 .

[5]  Jean-Noël Thépaut,et al.  Assimilation experiments with CHAMP GPS radio occultation measurements , 2006 .

[6]  Jens Wickert,et al.  Global tropopause height trends estimated from GPS radio occultation data , 2008 .

[7]  T. Reichler,et al.  Use of radio occultation for long‐term tropopause studies: Uncertainties, biases, and instabilities , 2008 .

[8]  J. Schofield,et al.  Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System , 1997 .

[9]  J. Holton,et al.  Stratosphere‐troposphere exchange , 1995 .

[10]  I. Brooks,et al.  Finding Boundary Layer Top: Application of a Wavelet Covariance Transform to Lidar Backscatter Profiles , 2003 .

[11]  Jens Wickert,et al.  Observing upper troposphere–lower stratosphere climate with radio occultation data from the CHAMP satellite , 2008 .

[12]  J. Dykema,et al.  Climate Benchmarking Using GNSS Occultation , 2006 .

[13]  Fei Wu,et al.  Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses , 2000 .

[14]  Jens Wickert,et al.  Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP , 2004 .

[15]  R. Sausen,et al.  Contributions of Anthropogenic and Natural Forcing to Recent Tropopause Height Changes , 2003, Science.