Impact of convection on the damping of an oscillating droplet during viscosity measurement using the ISS-EML facility

[1]  K. Samwer,et al.  Thermophysical properties of a Si50Ge50 melt measured on board the International Space Station. , 2020, NPJ microgravity.

[2]  D. Hofmann,et al.  Thermophysical properties of liquid Zr52.5Cu17.9Ni14.6Al10Ti5—prospects for bulk metallic glass manufacturing in space , 2019, npj Microgravity.

[3]  D. Matson,et al.  Surrogate model for convective flow inside electromagnetically levitated molten droplet using magnetohydrodynamic simulation and feature analysis , 2019, International Journal of Heat and Mass Transfer.

[4]  D. Matson,et al.  Numerical representations for flow velocity and shear rate inside electromagnetically levitated droplets in microgravity , 2019, npj Microgravity.

[5]  Jianzhong Jiang,et al.  Surface Tension and Viscosity of Cu50Zr50 Measured by the Oscillating Drop Technique on Board the International Space Station , 2019, Microgravity Science and Technology.

[6]  W. Nicholson,et al.  Comparison of Bacillus subtilis transcriptome profiles from two separate missions to the International Space Station , 2019, npj Microgravity.

[7]  J. Shrimpton,et al.  Laboratory experiments on the temporal decay of homogeneous anisotropic turbulence , 2019, Journal of Fluid Mechanics.

[8]  D. Matson,et al.  Deformation induced frequency shifts of oscillating droplets during molten metal surface tension measurement , 2018, Applied Physics Letters.

[9]  S. Yoffe,et al.  Onset criteria for freely decaying isotropic turbulence , 2018, Physical Review Fluids.

[10]  Hans-Jörg Fecht,et al.  Surface Tension and Viscosity of the Ni-Based Superalloys LEK94 and CMSX-10 Measured by the Oscillating Drop Method on Board a Parabolic Flight , 2017, Metallurgical and Materials Transactions B.

[11]  D. Matson,et al.  Preliminary Experiments Using Electromagnetic Levitation On the International Space Station , 2016 .

[12]  L. Battezzati,et al.  Thermophysical properties of some Ni-based superalloys in the liquid state relevant for solidification processing , 2016, Journal of Materials Science.

[13]  D. Matson,et al.  Numerical Prediction of the Accessible Convection Range for an Electromagnetically Levitated Fe50Co50 Droplet in Space , 2015, Metallurgical and Materials Transactions B.

[14]  J. Brillo,et al.  Density and viscosity of ternary Cr–Fe–Ni liquid alloys , 2013, Journal of Materials Science.

[15]  Valdis Bojarevics,et al.  Modeling of EML in Combined AC/DC Magnetic Fields as the Basis for Microgravity Experiments , 2013 .

[16]  C. Vassilicos An infinity of possible invariants for decaying homogeneous turbulence , 2011, 1101.0704.

[17]  J. B. Perot Determination of the decay exponent in mechanically stirred isotropic turbulence , 2010, 1007.5043.

[18]  K. Pericleous,et al.  Modelling of Electromagnetic Levitation - Consequences on Non-contact Physical Properties Measurements , 2008 .

[19]  B.Q. Li Effect of Convection on the Measurement of Thermophysical Properties Using Levitated Droplets , 2006, Annals of the New York Academy of Sciences.

[20]  A. Agrawal,et al.  Power law of decaying homogeneous isotropic turbulence at low Reynolds number. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  J. B. Perot,et al.  Modeling turbulent dissipation at low and moderate Reynolds numbers , 2006 .

[22]  S. Berry,et al.  Surface Oscillations of an Electromagnetically Levitated Droplet , 2005 .

[23]  R. Hyers Fluid flow effects in levitated droplets , 2005 .

[24]  J. R. Rogers,et al.  Convection in Containerless Processing , 2004, Annals of the New York Academy of Sciences.

[25]  X. Ai THE INSTABILITY ANALYSIS AND DIRECT NUMERICAL SIMULATION OF TURBULENT FLOWS IN ELECTROMAGNETICALLY LEVITATED DROPLETS , 2004 .

[26]  G. Trápaga,et al.  Laminar-turbulent transition in an electromagnetically levitated droplet , 2003 .

[27]  G. Gerbeth,et al.  Three-dimensional linear stability analysis of the flow in a liquid spherical droplet driven by an alternating magnetic field , 2003 .

[28]  F. Toschi,et al.  The decay of homogeneous anisotropic turbulence , 2003, Physics of Fluids.

[29]  G. Lohöfer,et al.  The new ISS electromagnetic levitation facility: MSL - EML , 2002 .

[30]  L. Shao,et al.  The decay of turbulence in a bounded domain , 2002 .

[31]  L. Skrbek,et al.  On the decay of homogeneous isotropic turbulence , 2000 .

[32]  S. Berry,et al.  Modeling of turbulent flow in electromagnetically levitated metal droplets , 2000 .

[33]  L. Skrbek,et al.  DECAY OF GRID TURBULENCE IN A FINITE CHANNEL , 1999 .

[34]  S. Schneider,et al.  Viscosity of eutectic Pd78Cu6Si16 measured by the oscillating drop technique in microgravity , 1998 .

[35]  J. Chasnov On the decay of inhomogeneous turbulence , 1997, Journal of Fluid Mechanics.

[36]  Peter S. Bernard,et al.  The energy decay in self-preserving isotropic turbulence revisited , 1991, Journal of Fluid Mechanics.

[37]  William K. George,et al.  The decay of homogeneous isotropic turbulence , 1992 .

[38]  ' CHARLESG.SPEZIALE,et al.  The energy decay in self-preserving isotropic turbulence revisited , 1980 .

[39]  P. Saffman Note on Decay of Homogeneous Turbulence , 1967 .

[40]  H. Lamb On the Oscillations of a Viscous Spheroid , 1881 .