A generalised three-dimensional tethered-nodule model for auxetic materials
暂无分享,去创建一个
Joseph N. Grima | Kenneth E. Evans | Andrew Alderson | K. Evans | Christopher W. Smith | A. Alderson | N. Gaspar | N. Gaspar
[1] Zoe A. D. Lethbridge,et al. Direct, static measurement of single-crystal Young's moduli of the zeolite natrolite: Comparison with dynamic studies and simulations , 2006 .
[2] R. Lakes. Foam Structures with a Negative Poisson's Ratio , 1987, Science.
[3] M. Koenders,et al. Micromechanic Formulation of Macroscopic Structures in a Granular Medium , 2001 .
[4] N. Gaspar. A granular material with a negative Poisson’s ratio , 2010 .
[5] Kenneth E. Evans,et al. Microstructural evolution in the processing of auxetic microporous polymers , 2007 .
[6] I. S. Sokolnikoff. Mathematical theory of elasticity , 1946 .
[7] W. G. Bickley. Mathematical Theory Of Elasticity , 1946, Nature.
[8] M. Wolcott. Cellular solids: Structure and properties , 1990 .
[9] M. Bowick,et al. The statistical mechanics of membranes , 2000, cond-mat/0002038.
[10] Joseph N. Grima,et al. Do Zeolites Have Negative Poisson's Ratios? , 2000 .
[11] Joseph N. Grima,et al. Modelling the deformation mechanisms, structure–property relationships and applications of auxetic nanomaterials , 2005 .
[12] Kenneth E. Evans,et al. The strain dependent indentation resilience of auxetic microporous polyethylene , 2000 .
[13] R. Bathurst,et al. Micromechanical Aspects of Isotropic Granular Assemblies With Linear Contact Interactions , 1988 .
[14] Kenneth E. Evans,et al. The interpretation of the strain-dependent Poisson's ratio in auxetic polyethylene , 1997 .
[15] Joseph N. Grima,et al. A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model , 2000 .
[16] K. Evans,et al. Strain-dependent behaviour of microporous polyethylene with a negative Poisson's ratio , 1993, Journal of Materials Science.
[17] C. Smith,et al. Quantitative analysis of the microscale of auxetic foams , 2005 .
[18] K. Badawi,et al. Interprtation cohrente du coefficient de Poisson ngatif rapport dans des multicouches mtalliques : rle du paramtre libre de contrainte , 1998 .
[19] K. E. EVANS,et al. Molecular network design , 1991, Nature.
[20] B. D. Caddock,et al. Negative Poisson ratios and strain-dependent mechanical properties in arterial prostheses. , 1995, Biomaterials.
[21] Joseph N. Grima,et al. Auxetic behaviour from rotating rigid units , 2005 .
[22] Kenneth E. Evans,et al. Interpretation of experimental data for Poisson's ratio of highly nonlinear materials , 1999 .
[23] Kenneth E. Evans,et al. Microstructural modelling of auxetic microporous polymers , 1995, Journal of Materials Science.
[24] Kenneth E. Evans,et al. Auxetic polyethylene: The effect of a negative poisson's ratio on hardness , 1994 .
[25] K. Evans,et al. Models for the elastic deformation of honeycombs , 1996 .
[26] M. Ashby,et al. The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[27] M. Ashby,et al. Cellular solids: Structure & properties , 1988 .
[28] Richard J. Bathurst,et al. Note on a random isotropic granular material with negative poisson's ratio , 1988 .
[29] A. Love,et al. The Mathematical Theory of Elasticity. , 1928 .
[30] G. Milton. Composite materials with poisson's ratios close to — 1 , 1992 .
[31] N. J. Mills,et al. Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells , 1997 .
[32] M. Koenders,et al. The auxetic properties of a network of bending beams , 2008 .
[33] Fabrizio Scarpa,et al. The electromagnetic properties of re-entrant dielectric honeycombs , 2000 .