The Markov chain Monte Carlo revolution

The use of simulation for high dimensional intractable computations has revolutionized applied mathematics. Designing, improving and understanding the new tools leads to (and leans on) fascinating mathematics, from representation theory through micro-local analysis.

[1]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[2]  J. Doob Stochastic processes , 1953 .

[3]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[4]  P. Prescott,et al.  Monte Carlo Methods , 1964, Computational Statistical Physics.

[5]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[6]  R. Dobrushin Prescribing a System of Random Variables by Conditional Distributions , 1970 .

[7]  D. Vere-Jones Markov Chains , 1972, Nature.

[8]  M. Eisen,et al.  Probability and its applications , 1975 .

[9]  Qin Lu,et al.  Preface , 1976, Brain Research Bulletin.

[10]  R. Graham,et al.  Spearman's Footrule as a Measure of Disarray , 1977 .

[11]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[12]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[13]  P. Billingsley,et al.  Probability and Measure , 1980 .

[14]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[15]  I. W. Molenaar,et al.  Statistics In The Social And Behavioral Sciences , 1985 .

[16]  T. Liggett Interacting Particle Systems , 1985 .

[17]  D. Critchlow Metric Methods for Analyzing Partially Ranked Data , 1986 .

[18]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[19]  P. Diaconis Group representations in probability and statistics , 1988 .

[20]  C. Brooks Computer simulation of liquids , 1989 .

[21]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[22]  Rabi Bhattacharya,et al.  Stochastic processes with applications , 1990 .

[23]  W. J. Anderson Continuous-Time Markov Chains: An Applications-Oriented Approach , 1991 .

[24]  W. J. Anderson Continuous-Time Markov Chains , 1991 .

[25]  J. A. Fill Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .

[26]  T. Lindvall Lectures on the Coupling Method , 1992 .

[27]  P. Diaconis,et al.  Eigen Analysis for Some Examples of the Metropolis Algorithm , 1992 .

[28]  Donald St. P. Richards,et al.  Hypergeometric functions on domains of positivity, Jack polynomials, and applications : proceedings of an AMS special session held March 22-23, 1991 in Tampa, Florida , 1992 .

[29]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[30]  Alistair Sinclair,et al.  Algorithms for Random Generation and Counting: A Markov Chain Approach , 1993, Progress in Theoretical Computer Science.

[31]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[32]  Jhg Wright Applied Probability and Statistics , 1993 .

[33]  M. Fukushima,et al.  Dirichlet forms and symmetric Markov processes , 1994 .

[34]  Persi Diaconis,et al.  What do we know about the Metropolis algorithm? , 1995, STOC '95.

[35]  Werner Krauth,et al.  Cluster algorithm for hard spheres and related systems , 1995 .

[36]  David Bruce Wilson,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.

[37]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[38]  P. Diaconis,et al.  Nash inequalities for finite Markov chains , 1996 .

[39]  H. Yau Logarithmic Sobolev inequality for generalized simple exclusion processes , 1997 .

[40]  Martin E. Dyer,et al.  Path coupling: A technique for proving rapid mixing in Markov chains , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[41]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[42]  Dušan D. Repovš,et al.  Examples and Counterexamples , 1998 .

[43]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[44]  Alistair Sinclair,et al.  Random walks on truncated cubes and sampling 0-1 knapsack solutions , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[45]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[46]  H. Thorisson Coupling, stationarity, and regeneration , 2000 .

[47]  H. Löwen Fun with Hard Spheres , 2000 .

[48]  S. F. Jarner,et al.  Geometric ergodicity of Metropolis algorithms , 2000 .

[49]  P. Diaconis,et al.  Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques , 2004, math/0401318.

[50]  W. Kendall,et al.  Efficient Markovian couplings: examples and counterexamples , 2000 .

[51]  P. Diaconis,et al.  A geometric interpretation of the Metropolis-Hastings algorithm , 2001 .

[52]  Galin L. Jones,et al.  Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .

[53]  Nando de Freitas,et al.  Sequential Monte Carlo in Practice , 2001 .

[54]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[55]  W. Michael Conklin,et al.  Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.

[56]  D. Frenkel,et al.  Understanding molecular simulation : from algorithms to applications. 2nd ed. , 2002 .

[57]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[58]  Jeff Gill,et al.  Bayesian Methods : A Social and Behavioral Sciences Approach , 2002 .

[59]  B. Widom Statistical Mechanics: A Concise Introduction for Chemists , 2002 .

[60]  Galin L. Jones,et al.  On the applicability of regenerative simulation in Markov chain Monte Carlo , 2002 .

[61]  S. Meyn,et al.  Spectral theory and limit theorems for geometrically ergodic Markov processes , 2002, math/0209200.

[62]  Michael W. Mahoney,et al.  Rapid Mixing of Several Markov Chains for a Hard-Core Model , 2003, ISAAC.

[63]  Á. Seress Permutation Group Algorithms , 2003 .

[64]  R. G. Wilson,et al.  DEPARTMENT OF STATISTICS UNIVERSITY OF WARWICK , 2003 .

[65]  P. Diaconis,et al.  A super-class walk on upper-triangular matrices , 2003 .

[66]  Santosh S. Vempala,et al.  Hit-and-run from a corner , 2004, STOC '04.

[67]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[68]  Fabio Martinelli,et al.  Relaxation Times of Markov Chains in Statistical Mechanics and Combinatorial Structures , 2004 .

[69]  Persi Diaconis,et al.  Numerical Results for the Metropolis Algorithm , 2004, Exp. Math..

[70]  A. Jaster The hexatic phase of the two-dimensional hard disk system , 2003, cond-mat/0305239.

[71]  W. Kendall Geometric ergodicity and perfect simulation , 2004, math/0410012.

[72]  Alistair Sinclair,et al.  Random Walks on Truncated Cubes and Sampling 0-1 Knapsack Solutions , 2004, SIAM J. Comput..

[73]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[74]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[75]  Eric Moulines,et al.  Inference in Hidden Markov Models (Springer Series in Statistics) , 2005 .

[76]  Yuguo Chen,et al.  Sequential Monte Carlo Methods for Statistical Analysis of Tables , 2005 .

[77]  P. Mackenzie The fundamental constants of Nature from lattice gauge theory simulations , 2005 .

[78]  Ravi Montenegro,et al.  Mathematical Aspects of Mixing Times in Markov Chains , 2006, Found. Trends Theor. Comput. Sci..

[79]  K. Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics , 2000 .

[80]  L. Pachter,et al.  Algebraic Statistics for Computational Biology: Preface , 2005 .

[81]  Jean Michel,et al.  Handbook of computational group theory , 2006, Math. Comput..

[82]  P. Diaconis,et al.  Supercharacter formulas for pattern groups , 2006, math/0610161.

[83]  M. Lefebvre Applied probability and statistics , 2006 .

[84]  Y. Ollivier Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.

[85]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[86]  P. Diaconis,et al.  Supercharacters and superclasses for algebra groups , 2007 .

[87]  A. Hora,et al.  Quantum Probability and Spectral Analysis of Graphs , 2007 .

[88]  D. Bakry,et al.  Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré , 2007, math/0703355.

[89]  F. Scarabotti,et al.  Harmonic Analysis on Finite Groups: Representation Theory, Gelfand Pairs and Markov Chains , 2008 .

[90]  F. Scarabotti,et al.  Harmonic analysis on finite groups , 2008 .

[91]  Herbert K. H. Lee Bayesian Methods: A Social and Behavioral Sciences Approach , 2008 .

[92]  P. Diaconis,et al.  Gibbs sampling, exponential families and orthogonal polynomials , 2008, 0808.3852.

[93]  F. Scarabotti,et al.  Harmonic Analysis on Finite Groups: Contents , 2008 .

[94]  Eric Marberg,et al.  Superinduction for pattern groups , 2007, 0712.1228.

[95]  I. Pak WHAT DO WE KNOW ABOUT THE PRODUCT REPLACEMENT ALGORITHM , 2009 .

[96]  Nathaniel Thiem,et al.  Restricting Supercharacters of the Finite Group of Unipotent Uppertriangular Matrices , 2007, Electron. J. Comb..

[97]  P. Diaconis,et al.  Micro-local analysis for the Metropolis algorithm , 2009 .

[98]  R. Neel A martingale approach to minimal surfaces , 2008, 0805.0556.

[99]  G. Lebeau,et al.  Semi-classical analysis of a random walk on a manifold , 2008, 0802.0644.