Optical technologies for quantum information science

A number of optical technologies remain to be developed and optimized for various applications in quantum information processing, especially quantum communication. We will give an overview of our approach to some of these, including periodic heralded single-photon sources based on spontaneous parametric down-conversion, ultrabright sources of tunable entangled photons, near unit efficiency single- and multi-photon detectors based on an atomic vapor interaction, quantum state transducers based on high efficiency frequency up-conversion, and low-loss optical quantum memories.

[1]  Konrad Banaszek,et al.  Photon counting with a loop detector. , 2003, Optics letters.

[2]  Barry C. Sanders,et al.  Photon counting schemes and performance of non-deterministic nonlinear gates in linear optics , 2002, SPIE Optics + Photonics.

[3]  D. Branning,et al.  Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.

[4]  Equivalent efficiency of a simulated photon-number detector , 2001, quant-ph/0111087.

[5]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[6]  N. Gisin,et al.  Highly efficient photon-pair source using periodically poled lithium niobate waveguide , 2000 .

[7]  J. D. Franson,et al.  Cyclical Quantum Memory for Photonic Qubits , 2002 .

[8]  Shigeki Takeuchi,et al.  Development of a high-quantum-efficiency single-photon counting system , 1999 .

[9]  V Giovannetti,et al.  Clock synchronization with dispersion cancellation. , 2001, Physical review letters.

[10]  Axel Kuhn,et al.  Deterministic single-photon source for distributed quantum networking. , 2002, Physical review letters.

[11]  John G. Rarity,et al.  Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs , 2001 .

[12]  Fredrik Laurell,et al.  Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP. , 2004, Optics express.

[13]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[14]  W. J. Munro,et al.  Exploring Hilbert space: Accurate characterization of quantum information , 2001 .

[15]  Y. Shih,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical Review Letters.

[16]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[17]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[18]  Edo Waks,et al.  Ultra-bright source of polarization-entangled photons , 1999 .

[19]  M. Shahriar,et al.  Long distance, unconditional teleportation of atomic states via complete Bell state measurements. , 2000, Physical review letters.

[20]  Colin P. Williams,et al.  Quantum clock synchronization based on shared prior entanglement , 2000, Physical review letters.

[21]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[22]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[23]  Sae Woo Nam,et al.  Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors , 1998 .

[24]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  Pascal Baldi,et al.  Soft proton exchange on periodically poled LiNbO3: A simple waveguide fabrication process for highly efficient nonlinear interactions , 2000 .

[26]  Belgium,et al.  Maximal entanglement versus entropy for mixed quantum states , 2002, quant-ph/0208138.

[27]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[28]  Samuel L. Braunstein,et al.  Detection devices in entanglement-based optical state preparation , 2001 .

[29]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[30]  W. Munro,et al.  Maximizing the entanglement of two mixed qubits , 2001, quant-ph/0103113.

[31]  M. Fejer,et al.  Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3 , 1995 .

[32]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[33]  Paul G. Kwiat,et al.  Hyper-entangled states , 1997 .

[34]  J. P. Ciscar,et al.  Single-photon counters in the telecom wavelength region of 1550 nm for quantum information processing , 2001 .

[35]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[36]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[37]  Andrew G. White,et al.  Nonmaximally Entangled States: Production, Characterization, and Utilization , 1999, quant-ph/9908081.

[38]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[39]  P. Kwiat,et al.  Experimental investigation of a two-qubit decoherence-free subspace. , 2004, Physical review letters.

[40]  Y. Yamamoto,et al.  Triggered single photons from a quantum dot. , 2001, Physical review letters.

[41]  S. Lloyd,et al.  Quantum-enhanced positioning and clock synchronization , 2001, Nature.

[42]  Franco N. C. Wong,et al.  Efficient single-photon counting at 1.55 um via frequency upconversion , 2003 .

[43]  Donald R. Herriott,et al.  Folded Optical Delay Lines , 1965 .

[44]  A. Imamoğlu High efficiency photon counting using stored light. , 2002, Physical Review Letters.

[45]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[46]  Shigeki Takeuchi,et al.  Multiphoton detection using visible light photon counter , 1999 .

[47]  A. G. White,et al.  Ancilla-assisted quantum process tomography. , 2003, Physical review letters.

[48]  J. D. Franson,et al.  Single photons on pseudodemand from stored parametric down-conversion , 2002, quant-ph/0205103.

[49]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[50]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[51]  Paul G. Kwiat,et al.  High efficiency single photon detection via frequency up-conversion , 2004 .

[52]  Steinberg,et al.  High-efficiency single-photon detectors. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[53]  L. E. Myers,et al.  Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators , 1997 .

[54]  N. Gisin,et al.  PPLN waveguide for quantum communication , 2001, quant-ph/0107125.

[55]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[56]  Martin M. Fejer,et al.  Quasi-phasematched optical parametric oscillators using bulk periodically poled LiNbO3 , 1995, Photonics West.

[57]  J.I. Cirac,et al.  Quantum memory for light , 1999, EQEC '05. European Quantum Electronics Conference, 2005..

[58]  Scott Glancy,et al.  Imperfect detectors in linear optical quantum computers , 2002 .

[59]  Andrew J. Berglund,et al.  Quantum coherence and control in one- and two-photon optical systems , 2000 .

[60]  Hong,et al.  Experimental realization of a localized one-photon state. , 1986, Physical review letters.

[61]  Christian Kurtsiefer,et al.  Stable Solid-State Source of Single Photons , 2000 .

[62]  M D'Angelo,et al.  Two-photon diffraction and quantum lithography. , 2001, Physical review letters.

[63]  A. Lvovsky,et al.  Optical mode characterization of single photons prepared by means of conditional measurements on a biphoton state , 2001, quant-ph/0107080.

[64]  Nicholas Peters,et al.  Precise creation, characterization, and manipulation of single optical qubits , 2003, Quantum Inf. Comput..

[65]  P. Kwiat,et al.  Delayed-choice quantum cryptography , 2002, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[66]  P. Kok,et al.  Linear optics and projective measurements alone suffice to create large-photon-number path entanglement , 2001, quant-ph/0109080.

[67]  M. Lukin,et al.  Controlling photons using electromagnetically induced transparency , 2001, Nature.

[68]  D. James,et al.  Atomic-vapor-based high efficiency optical detectors with photon number resolution. , 2002, Physical review letters.

[69]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[70]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[71]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[72]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[73]  O. Okunev,et al.  Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range , 2002 .