Estimating Kramers–Moyal coefficients in short and non-stationary data sets

[1]  R. L. Stratonovich,et al.  Topics in the theory of random noise , 1967 .

[2]  H. Risken Fokker-Planck Equation , 1984 .

[3]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[4]  Wiesenfeld,et al.  Theory of stochastic resonance. , 1989, Physical review. A, General physics.

[5]  Hu,et al.  Periodically forced Fokker-Planck equation and stochastic resonance. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[6]  Zhou,et al.  Analog simulations of stochastic resonance. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[7]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[8]  Statistical dependency of eddies of different sizes in turbulence , 1996 .

[9]  Haken,et al.  Diffusion of periodically forced Brownian particles moving in space-periodic potentials. , 1996, Physical review letters.

[10]  R. Astumian Thermodynamics and kinetics of a Brownian motor. , 1997, Science.

[11]  Joachim Peinke,et al.  FOKKER-PLANCK EQUATION FOR THE ENERGY CASCADE IN TURBULENCE , 1997 .

[12]  J. Peinke,et al.  Description of a Turbulent Cascade by a Fokker-Planck Equation , 1997 .

[13]  J. Peinke,et al.  Statistical properties of a turbulent cascade , 1997 .

[14]  R. Friedrich,et al.  Analysis of data sets of stochastic systems , 1998 .

[15]  Jan Raethjen,et al.  Extracting model equations from experimental data , 2000 .

[16]  P. Reimann Brownian motors: noisy transport far from equilibrium , 2000, cond-mat/0010237.

[17]  Gradisek,et al.  Analysis of time series from stochastic processes , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Friedrich,et al.  How to quantify deterministic and random influences on the statistics of the foreign exchange market , 1999, Physical review letters.

[19]  Joachim Peinke,et al.  Experimental indications for Markov properties of small-scale turbulence , 2001, Journal of Fluid Mechanics.

[20]  V Wirth Detection of hidden regimes in stochastic cyclostationary time series. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Peter Hänggi,et al.  Introduction to the physics of Brownian motors , 2001 .

[22]  Universality of small scale turbulence. , 2001, Physical review letters.

[23]  R. Friedrich,et al.  Reconstruction of dynamical equations for traffic flow , 2002 .

[24]  T D Frank,et al.  Noise-covered drift bifurcation of dissipative solitons in a planar gas-discharge system. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Philip Sura,et al.  Stochastic Analysis of Southern and Pacific Ocean Sea Surface Winds , 2003 .

[26]  J. Peinke,et al.  Stochastic analysis of surface roughness , 2003 .

[27]  Jarmo Hietarinta,et al.  Stochastic model for heart-rate fluctuations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  R. Friedrich,et al.  On a quantitative method to analyze dynamical and measurement noise , 2003 .

[29]  F. Schmitt A causal multifractal stochastic equation and its statistical properties , 2003, cond-mat/0305655.

[30]  Peter J. Beek,et al.  Identifying noise sources of time-delayed feedback systems , 2004 .