The State of the Art Ten Years After a State of the Art: Future Research in Music Information Retrieval

Abstract A decade has passed since the first review of research on a ‘flagship application’ of music information retrieval (MIR): the problem of music genre recognition (MGR). During this time, about 500 works addressing MGR have been published, and at least 10 campaigns have been run to evaluate MGR systems. This makes MGR one of the most researched areas of MIR. So, where does MGR now lie? We show that in spite of this massive amount of work, MGR does not lie far from where it began, and the paramount reason for this is that most evaluation in MGR lacks validity. We perform a case study of all published research using the most-used benchmark dataset in MGR during the past decade: GTZAN. We show that none of the evaluations in these many works is valid to produce conclusions with respect to recognizing genre, i.e. that a system is using criteria relevant for recognizing genre. In fact, the problems of validity in evaluation also affect research in music emotion recognition and autotagging. We conclude by discussing the implications of our work for MGR and MIR in the next ten years.

[1]  Gerhard Widmer,et al.  Towards Characterisation of Music via Rhythmic Patterns , 2004, ISMIR.

[2]  Ingo Mierswa,et al.  Understandable models Of music collections based on exhaustive feature generation with temporal statistics , 2006, KDD '06.

[3]  H. Yoshida Tokyo, Japan , 2019, The Statesman’s Yearbook Companion.

[4]  Tomoko Matsui,et al.  Nonnegative matrix factorization based self-taught learning with application to music genre classification , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[5]  Claes Wohlin,et al.  Experimentation in Software Engineering , 2000, The Kluwer International Series in Software Engineering.

[6]  Joakim Andén,et al.  Multiscale Scattering for Audio Classification , 2011, ISMIR.

[7]  Avery Wang,et al.  An Industrial Strength Audio Search Algorithm , 2003, ISMIR.

[8]  P. Denning What is Experimental Computer Science ? , 2000 .

[9]  Edward R. Dougherty,et al.  Scientific knowledge is possible with small-sample classification , 2013, EURASIP J. Bioinform. Syst. Biol..

[10]  Arthur Flexer,et al.  Effects of Album and Artist Filters in Audio Similarity Computed for Very Large Music Databases , 2010, Computer Music Journal.

[11]  F. Bergersen,et al.  An evaluation of , 1983 .

[12]  Tao Li,et al.  Toward intelligent music information retrieval , 2006, IEEE Transactions on Multimedia.

[13]  Bob L. Sturm,et al.  On Evaluation Validity in Music Autotagging , 2014, ArXiv.

[14]  Zhouyu Fu,et al.  A Survey of Audio-Based Music Classification and Annotation , 2011, IEEE Transactions on Multimedia.

[15]  Rodrigo Nakamura,et al.  New Trends in Musical Genre Classification Using Optimum-Path Forest , 2011, ISMIR.

[16]  Rafael Ramírez,et al.  Genre Classification Using Harmony Rules Induced from Automatic Chord Transcriptions , 2009, ISMIR.

[17]  Bob L. Sturm,et al.  On Automatic Music Genre Recognition by Sparse Representation Classification using Auditory Temporal Modulations , 2012, CMMR 2012.

[18]  J. Stephen Downie,et al.  The Scientific Evaluation of Music Information Retrieval Systems: Foundations and Future , 2004, Computer Music Journal.

[19]  Gerhard Widmer,et al.  Improvements of Audio-Based Music Similarity and Genre Classificaton , 2005, ISMIR.

[20]  Roger B. Dannenberg Style in Music , 2010, The Structure of Style.

[21]  Andreas Rauber,et al.  Evaluation of Feature Extractors and Psycho-Acoustic Transformations for Music Genre Classification , 2005, ISMIR.

[22]  Arthur Flexer,et al.  A Closer Look on Artist Filters for Musical Genre Classification , 2007, ISMIR.

[23]  F. Fabbri A Theory Of Musical Genres. Two Applications , 1982 .

[24]  Jayme G. A. Barbedo,et al.  Automatic Genre Classification of Musical Signals , 2007, EURASIP J. Adv. Signal Process..

[25]  J. Stephen Downie,et al.  How Significant is Statistically Significant? The case of Audio Music Similarity and Retrieval , 2012, ISMIR.

[26]  David J. Hand,et al.  Deconstructing Statistical Questions , 1994 .

[27]  François Pachet,et al.  A taxonomy of musical genres , 2000, RIAO.

[28]  Robert L. Glass,et al.  Science and substance: a challenge to software engineers , 1994, IEEE Software.

[29]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Thomas Lidy,et al.  Evaluation of New Audio Features and Their Utilization in Novel Music Retrieval Applications , 2006 .

[31]  Jelena Kovacevic,et al.  Reproducible research in signal processing , 2009, IEEE Signal Process. Mag..

[32]  W. Stone A Dictionary of Music , 1878, Nature.

[33]  Peter Shapiro Turn the beat around : the secret history of disco , 2005 .

[34]  Robert O. Gjerdingen,et al.  Scanning the Dial: The Rapid Recognition of Music Genres , 2008 .

[35]  M. Mcluhan Understanding Media: The Extensions of Man , 1964 .

[36]  Mónica Marrero,et al.  Audio Music Similarity and Retrieval: Evaluation Power and Stability , 2011, ISMIR.

[37]  Bob L. Sturm On the evaluation of music genre recognition systems , 2013 .

[38]  A. Neuringer,et al.  Music discriminations by pigeons. , 1984 .

[39]  Peter J. Denning,et al.  An ACM executive committee position on the crisis in experimental computer science , 1979, CACM.

[40]  Robert P.W. Duin,et al.  PRTools3: A Matlab Toolbox for Pattern Recognition , 2000 .

[41]  Geraint A. Wiggins,et al.  How Many Beans Make Five? The Consensus Problem in Music-Genre Classification and a New Evaluation Method for Single-Genre Categorisation Systems , 2007, ISMIR.

[42]  R. Rosenthal,et al.  Clever Hans : the horse of Mr. Von Osten , 1911 .

[43]  J. Stephen Downie,et al.  The music information retrieval evaluation exchange (2005-2007): A window into music information retrieval research , 2008 .

[44]  A. R. Chase,et al.  Music discriminations by carp (Cyprinus carpio) , 2001 .

[45]  Elias Pampalk,et al.  Introduction–From Genres to Tags: A Little Epistemology of Music Information Retrieval Research , 2008 .

[46]  Òscar Celma,et al.  The Quest for Musical Genres: Do the Experts and the Wisdom of Crowds Agree? , 2008, ISMIR.

[47]  R. A. Bailey,et al.  Design of comparative experiments , 2008 .

[48]  Thierry Bertin-Mahieux,et al.  Automatic Tagging of Audio: The State-of-the-Art , 2011 .

[49]  Bob L. Sturm Evaluating music emotion recognition: Lessons from music genre recognition? , 2013, 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW).

[50]  Thierry Bertin-Mahieux,et al.  The Million Song Dataset , 2011, ISMIR.

[51]  Emmanuel Bigand,et al.  Seven problems that keep MIR from attracting the interest of cognition and neuroscience , 2013, Journal of Intelligent Information Systems.

[52]  Gert R. G. Lanckriet,et al.  Combining Feature Kernels for Semantic Music Retrieval , 2008, ISMIR.

[53]  Bob L. Sturm An analysis of the GTZAN music genre dataset , 2012, MIRUM '12.

[54]  N. Scaringella,et al.  Automatic genre classification of music content: a survey , 2006, IEEE Signal Process. Mag..

[55]  Antoni B. Chan,et al.  Genre Classification and the Invariance of MFCC Features to Key and Tempo , 2011, MMM.

[56]  Bob L. Sturm Music genre recognition with risk and rejection , 2013, 2013 IEEE International Conference on Multimedia and Expo (ICME).

[57]  Ming Li,et al.  Genre Classification via an LZ78-Based String Kernel , 2005, ISMIR.

[58]  David S. Watson,et al.  A Machine Learning Approach to Musical Style Recognition , 1997, ICMC.

[59]  Jean-Pierre Martens,et al.  A comparison of human and automatic musical genre classification , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[60]  Bob L. Sturm,et al.  Revisiting Inter-Genre Similarity , 2013, IEEE Signal Processing Letters.

[61]  Julián Urbano Information Retrieval Meta-Evaluation: Challenges and Opportunities in the Music Domain , 2011, ISMIR.

[62]  Bob L. Sturm,et al.  Regression with sparse approximations of data , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[63]  J. Stephen Downie,et al.  The Impact of MIREX on Scholarly Research (2005 - 2010) , 2012, ISMIR.

[64]  Mark B. Sandler,et al.  Music Information Retrieval Using Social Tags and Audio , 2009, IEEE Transactions on Multimedia.

[65]  Bob L. Sturm A Survey of Evaluation in Music Genre Recognition , 2012, Adaptive Multimedia Retrieval.

[66]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[67]  Steven Salzberg,et al.  On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach , 1997, Data Mining and Knowledge Discovery.

[68]  Peter J. Denning,et al.  ACM president's letter: performance analysis: experimental computer science as its best , 1981, CACM.

[69]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[70]  J DenningPeter ACM president's letter: performance analysis: experimental computer science as its best , 1981 .

[71]  Ulas Bagci,et al.  Automatic Classification of Musical Genres Using Inter-Genre Similarity , 2007, IEEE Signal Processing Letters.

[72]  Martin Hartmann,et al.  Testing a spectral-based feature set for audio genre classification , 2011 .

[73]  J. Stephen Downie,et al.  Toward the scientific evaluation of music information retrieval systems , 2003, ISMIR.

[74]  Xavier Serra,et al.  Roadmap for Music Information ReSearch , 2013 .

[75]  D. Feitelson Experimental Computer Science: the Need for a Cultural Change , 2006 .

[76]  J. Kepler,et al.  Album And Artist Effects For Audio Similarity At The Scale Of The Web , 2009 .

[77]  Ichiro Fujinaga,et al.  Musical genre classification: Is it worth pursuing and how can it be improved? , 2006, ISMIR.

[78]  Manuela M. Veloso,et al.  Autonomous robot dancing driven by beats and emotions of music , 2012, AAMAS.

[79]  Bob L. Sturm The GTZAN dataset: Its contents, its faults, their effects on evaluation, and its future use , 2013, ArXiv.

[80]  Constantine Kotropoulos,et al.  Music Genre Classification Using Locality Preserving Non-Negative Tensor Factorization and Sparse Representations , 2009, ISMIR.

[81]  Enric Guaus,et al.  Audio content processing for automatic music genre classification : descriptors, databases, and classifiers , 2009 .

[82]  Yann LeCun,et al.  Feature learning and deep architectures: new directions for music informatics , 2013, Journal of Intelligent Information Systems.

[83]  François Pachet,et al.  Representing Musical Genre: A State of the Art , 2003 .

[84]  Douglas Eck,et al.  Aggregate features and ADABOOST for music classification , 2006, Machine Learning.

[85]  Thierry Bertin-Mahieux,et al.  Autotagger: A Model for Predicting Social Tags from Acoustic Features on Large Music Databases , 2008 .

[86]  Chris Kemp,et al.  Towards a holistic interpretation of musical genre classification , 2004 .

[87]  Joakim Andén,et al.  Deep Scattering Spectrum , 2013, IEEE Transactions on Signal Processing.

[88]  Jyh-Shing Roger Jang,et al.  Music Genre Classification via Compressive Sampling , 2010, ISMIR.

[89]  Constantine Kotropoulos,et al.  Music genre classification via Topology Preserving Non-Negative Tensor Factorization and sparse representations , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[90]  S. Rendón Understanding media : the extensions of man , 1967 .

[91]  Bob L. Sturm Formalizing Evaluation in Music Information Retrieval: A Look at the MIREX Automatic Mood Classification Task , 2013, CMMR 2013.

[92]  Jurandy Almeida,et al.  Supervised Video Genre Classification Using Optimum-Path Forest , 2015, CIARP.

[93]  M. Furst,et al.  Neural network based model for classification of music type , 1995, Eighteenth Convention of Electrical and Electronics Engineers in Israel.

[94]  A. W. Kimball,et al.  Errors of the Third Kind in Statistical Consulting , 1957 .

[95]  Peter J. Denning,et al.  ACM President's Letter: What is experimental computer science? , 1980, CACM.

[96]  Bob L. Sturm A Simple Method to Determine if a Music Information Retrieval System is a “Horse” , 2014, IEEE Transactions on Multimedia.

[97]  Marcos Aurélio Domingues,et al.  Three Current Issues In Music Autotagging , 2011, ISMIR.

[98]  Enric Guaus i Termens Audio content processing for automatic music genre classification: descriptors, databases, and classifiers , 2010 .

[99]  Sofia Cavaco,et al.  Unsupervised Music Genre Classification with a Model-Based Approach , 2011, EPIA.

[100]  Bob L. Sturm Two systems for automatic music genre recognition: what are they really recognizing? , 2012, MIRUM '12.

[101]  Patrick Roos,et al.  Zipf’s Law, Power Laws, and Music Aesthetics , 2011 .

[102]  Mert Bay,et al.  The Music Information Retrieval Evaluation eXchange: Some Observations and Insights , 2010, Advances in Music Information Retrieval.

[103]  Tomoko Matsui,et al.  Music genre classification using self-taught learning via sparse coding , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[104]  Klaus Seyerlehner FUSING BLOCK-LEVEL FEATURES FOR MUSIC SIMILARITY ESTIMATION , 2010 .

[105]  Seung-Min Park,et al.  Optimization system of musical expression for the music genre classification , 2011, 2011 11th International Conference on Control, Automation and Systems.

[106]  J. Overhage,et al.  Sorting Things Out: Classification and Its Consequences , 2001, Annals of Internal Medicine.

[107]  George Tzanetakis,et al.  Musical genre classification of audio signals , 2002, IEEE Trans. Speech Audio Process..

[108]  Elias Pampalk,et al.  Computational Models of Music Similarity and their Application in Music Information Retrieval , 2006 .

[109]  Daniel P. W. Ellis,et al.  Song-Level Features and Support Vector Machines for Music Classification , 2005, ISMIR.

[110]  Geraint A. Wiggins Semantic Gap?? Schemantic Schmap!! Methodological Considerations in the Scientific Study of Music , 2009, 2009 11th IEEE International Symposium on Multimedia.

[111]  Andreas Rauber,et al.  Rhyme and Style Features for Musical Genre Classification by Song Lyrics , 2008, ISMIR.

[112]  Arthur Flexer,et al.  Statistical evaluation of music information retrieval experiments , 2006 .

[113]  Changxing Ding,et al.  Robust face recognition , 2016 .

[114]  Constantine Kotropoulos,et al.  Music genre classification via sparse representations of auditory temporal modulations , 2009, 2009 17th European Signal Processing Conference.

[115]  Xavier Serra,et al.  Evaluation in Music Information Retrieval , 2013, Journal of Intelligent Information Systems.

[116]  Wenwu Wang,et al.  Machine Audition: Principles, Algorithms and Systems , 2010 .