A perspective on organic electrode materials and technologies for next generation batteries

[1]  Yu Zhao,et al.  Flame-retarding battery cathode materials based on reversible multi-electron redox chemistry of phenothiazine-based polymer , 2020, Journal of Energy Chemistry.

[2]  D. Mecerreyes,et al.  Symmetric all-organic battery containing a dual redox-active polymer as cathode and anode material. , 2020, ChemSusChem.

[3]  K. Oyaizu,et al.  Ultrafast Charge/Discharge by a 99.9% Conventional Lithium Iron Phosphate Electrode Containing 0.1% Redox-Active Fluoflavin Polymer , 2020 .

[4]  S. Duquesne,et al.  An engineered PET depolymerase to break down and recycle plastic bottles , 2020, Nature.

[5]  Hui Zhan,et al.  A metal-free battery working at −80 ​°C , 2020 .

[6]  Clemens Liedel Sustainable Battery Materials from Biomass , 2020, ChemSusChem.

[7]  P. Poizot,et al.  Pairing cross-linked polyviologen with aromatic amine host structure for anion shuttle rechargeable batteries. , 2020, ChemSusChem.

[8]  Yan Yao,et al.  Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. , 2020, Chemical reviews.

[9]  Alison Stoddart Batteries under radical scrutiny , 2020, Nature Reviews Materials.

[10]  M. Shahzad,et al.  Prospects in anode materials for sodium ion batteries - A review , 2020 .

[11]  C. R. Bridges,et al.  Phosphaviologen‐Based Pyrene‐Carbon Nanotube Composites for Stable Battery Electrodes , 2020 .

[12]  D. Brandell,et al.  Tuning the Electrochemical Properties of Organic Battery Cathode Materials: Insights from Evolutionary Algorithm DFT Calculations , 2020, ChemSusChem.

[13]  Yong Lu,et al.  Prospects of organic electrode materials for practical lithium batteries , 2020, Nature Reviews Chemistry.

[14]  Wu Tang,et al.  Synthesis of 1,4-benzoquinone dimer as a high-capacity (501 mA h g−1) and high-energy-density (>1000 Wh kg−1) organic cathode for organic Li-Ion full batteries , 2020 .

[15]  Jun Chen,et al.  A Comparative Review of Electrolytes for Organic‐Material‐Based Energy‐Storage Devices Employing Solid Electrodes and Redox Fluids , 2020, ChemSusChem.

[16]  Cheolsoo Jung,et al.  Roles of gel polymer electrolytes for high-power activated carbon supercapacitors: ion reservoir and binder-like effects , 2020, RSC advances.

[17]  H. Abruña,et al.  Cross-linking Effects on Performance Metrics of Phenazine-Based Polymer Cathodes. , 2020, ChemSusChem.

[18]  Licheng Miao,et al.  Molecular design strategy towards high-redox-potential and low soluble n-type phenazine derivatives as cathode materials for lithium batteries. , 2020, ChemSusChem.

[19]  Jiujun Zhang,et al.  Recent Progress in Advanced Organic Electrode Materials for Sodium‐Ion Batteries: Synthesis, Mechanisms, Challenges and Perspectives , 2020, Advanced Functional Materials.

[20]  K. Kang,et al.  Anchored mediator enabling shuttle-free redox mediation in lithium-oxygen batteries. , 2020, Angewandte Chemie.

[21]  M. Winter,et al.  Poly(vinylphenoxazine) as Fast-Charging Cathode Material for Organic Batteries , 2020 .

[22]  Chao Luo,et al.  Organic Electrode Materials for Metal Ion Batteries. , 2020, ACS applied materials & interfaces.

[23]  K. Oyaizu,et al.  Metal-free, Solid-state, and Paper-like Rechargeable Batteries Consisting of Redox-active Polyethers. , 2019, ChemSusChem.

[24]  M. Winter,et al.  Phenothiazine‐Functionalized Poly(norbornene)s as High‐Rate Cathode Materials for Organic Batteries , 2019, ChemSusChem.

[25]  Birgit Esser Redox Polymers as Electrode-Active Materials for Batteries , 2019, Organic Materials.

[26]  M. Armand,et al.  Tuning the chemistry of organic-nitrogen compounds for promoting all-organic anionic rechargeable batteries. , 2019, Angewandte Chemie.

[27]  Baohua Li,et al.  Organic quinones towards advanced electrochemical energy storage: recent advances and challenges , 2019, Journal of Materials Chemistry A.

[28]  A. Vlad,et al.  Negative Redox Potential Shift in Fire-Retardant Electrolytes and Consequences for High-Energy Hybrid Batteries , 2019, ACS Applied Energy Materials.

[29]  C. M. Araujo,et al.  π‐Conjugation Enables Ultra‐High Rate Capabilities and Cycling Stabilities in Phenothiazine Copolymers as Cathode‐Active Battery Materials , 2019, Advanced Functional Materials.

[30]  J. Gohy,et al.  Carbonyl-Based π-Conjugated Materials: From Synthesis to Applications in Lithium-Ion Batteries. , 2019, ChemPlusChem.

[31]  Seokgwang Doo,et al.  Nonconjugated Redox-Active Polymer Mediators for Rapid Electrocatalytic Charging of Lithium Metal Oxides , 2019, ACS Applied Energy Materials.

[32]  U. Schubert,et al.  Sustainable Energy Storage: Recent Trends and Developments toward Fully Organic Batteries , 2019, ChemSusChem.

[33]  M. Nisula,et al.  Organic electrode materials with solid-state battery technology , 2019, Journal of Materials Chemistry A.

[34]  Weiwei Huang,et al.  High-capacity organic sodium ion batteries using a sustainable C4Q/CMK-3/SWCNT electrode , 2019, Inorganic Chemistry Frontiers.

[35]  J. Tarascon,et al.  Mesoscale Texturation of Organic-Based Negative Electrode Material through in Situ Proton Reduction of Conjugated Carboxylic Acid , 2019, Chemistry of Materials.

[36]  P. He,et al.  A Dual-Ion Organic Symmetric Battery Constructed from Phenazine-Based Artificial Bipolar Molecules. , 2019, Angewandte Chemie.

[37]  Ho Won Jang,et al.  Charge-transfer complexes for high-power organic rechargeable batteries , 2019, Energy Storage Materials.

[38]  Gang Wu,et al.  A highly conductive, transparent molecular charge-transfer salt with reversible lithiation. , 2019, Chemical communications.

[39]  M. Armand,et al.  Recent Progress on Organic Electrodes Materials for Rechargeable Batteries and Supercapacitors , 2019, Materials.

[40]  Lixin Qiao,et al.  Energy Density Assessment of Organic Batteries , 2019, ACS Applied Energy Materials.

[41]  Yong Lu,et al.  Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithium-Ion Batteries. , 2019, Angewandte Chemie.

[42]  Yan Yao,et al.  Taming Active Material-Solid Electrolyte Interfaces with Organic Cathode for All-Solid-State Batteries , 2019, Joule.

[43]  Yu Zhao,et al.  Chain rigidity modification to promote the electrochemical performance of polymeric battery electrode materials , 2019, Journal of Materials Chemistry A.

[44]  Ahmad T. Mayyas,et al.  The case for recycling: Overview and challenges in the material supply chain for automotive li-ion batteries , 2019, Sustainable Materials and Technologies.

[45]  J. Xie,et al.  Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal-Ion Rechargeable Batteries with Organic Materials as Promising Electrodes. , 2019, Small.

[46]  R. Fraser,et al.  Study of energy storage systems and environmental challenges of batteries , 2019, Renewable and Sustainable Energy Reviews.

[47]  G. Seck,et al.  Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport , 2019, Applied Energy.

[48]  D. Brandell,et al.  Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality? , 2019, Chemical reviews.

[49]  Yan Yao,et al.  Directing Mg-Storage Chemistry in Organic Polymers toward High-Energy Mg Batteries , 2019, Joule.

[50]  Yi‐Chun Lu,et al.  A high-rate and long-life organic–oxygen battery , 2019, Nature Materials.

[51]  D. Brandell,et al.  Predicting Structure and Electrochemistry of Dilithium Thiophene-2,5-Dicarboxylate Electrodes by Density Functional Theory and Evolutionary Algorithms , 2019, The Journal of Physical Chemistry C.

[52]  J. Dahn,et al.  A Guide to Full Coin Cell Making for Academic Researchers , 2019, Journal of The Electrochemical Society.

[53]  M. M. Silva,et al.  Forecasting model to assess the potential of secondary lead production from lead acid battery scrap. , 2019 .

[54]  X. Crispin,et al.  Polarons, Bipolarons, And Absorption Spectroscopy of PEDOT , 2018, ACS Applied Polymer Materials.

[55]  Michael T. Otley,et al.  Rechargeable aluminium organic batteries , 2018, Nature Energy.

[56]  Zhiqiang Niu,et al.  Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries , 2018, Chem.

[57]  Hui Zhan,et al.  A Metal-free Battery with Pure Ionic Liquid Electrolyte , 2018, iScience.

[58]  J. Lutkenhaus,et al.  Real-time insight into the doping mechanism of redox-active organic radical polymers , 2018, Nature Materials.

[59]  S. Jang,et al.  Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries , 2018, RSC advances.

[60]  Xin-bo Zhang,et al.  Organic Carbonyl Compounds for Sodium-Ion Batteries: Recent Progress and Future Perspectives. , 2018, Chemistry.

[61]  C. M. Araujo,et al.  On the Design of Donor–Acceptor Conjugated Polymers for Photocatalytic Hydrogen Evolution Reaction: First-Principles Theory-Based Assessment , 2018, The Journal of Physical Chemistry C.

[62]  Ji Man Kim,et al.  Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries , 2018 .

[63]  P. Poizot,et al.  Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution , 2018, Nature Communications.

[64]  Nobuhiro Ogihara,et al.  Intercalated metal–organic frameworks with high electronic conductivity as negative electrode materials for hybrid capacitors , 2018, Communications Chemistry.

[65]  M. Winter,et al.  Unlocking Full Discharge Capacities of Poly(vinylphenothiazine) as Battery Cathode Material by Decreasing Polymer Mobility Through Cross‐Linking , 2018, Advanced Energy Materials.

[66]  Li Li,et al.  Toward sustainable and systematic recycling of spent rechargeable batteries. , 2018, Chemical Society reviews.

[67]  K. Kang,et al.  Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries , 2018, Advanced materials.

[68]  Rabeeh Golmohammadzadeh,et al.  Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review , 2018, Resources, Conservation and Recycling.

[69]  Yan Yao,et al.  Positioning Organic Electrode Materials in the Battery Landscape , 2018, Joule.

[70]  Hui Li,et al.  CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions , 2018, Energy Economics.

[71]  M. Winter,et al.  Mechanism of Charge/Discharge of Poly(vinylphenothiazine)-Based Li–Organic Batteries , 2018, Chemistry of Materials.

[72]  H. Abruña,et al.  Phenothiazine-Based Polymer Cathode Materials with Ultrahigh Power Densities for Lithium Ion Batteries , 2018, ACS Applied Energy Materials.

[73]  Yongbing Tang,et al.  A Review on the Features and Progress of Dual‐Ion Batteries , 2018 .

[74]  Wenbin Hu,et al.  Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium. , 2018, Chemical reviews.

[75]  I. Zozoulenko,et al.  Morphology and ion diffusion in PEDOT:Tos. A coarse grained molecular dynamics simulation. , 2018, Physical chemistry chemical physics : PCCP.

[76]  M. Carvalho,et al.  The lithium-ion battery: State of the art and future perspectives , 2018, Renewable and Sustainable Energy Reviews.

[77]  Xiulin Fan,et al.  Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li‐Ion Batteries , 2018, Advanced materials.

[78]  P. Poizot,et al.  Progress in all-organic rechargeable batteries using cationic and anionic configurations: Toward low-cost and greener storage solutions? , 2018, Current Opinion in Electrochemistry.

[79]  Yongyao Xia,et al.  Organic Batteries Operated at −70°C , 2018 .

[80]  Chenpei Yuan,et al.  Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries. , 2018, Journal of colloid and interface science.

[81]  R. Ahuja,et al.  Identifying the tuning key of disproportionation redox reaction in terephthalate: A Li-based anode for sustainable organic batteries , 2018 .

[82]  Andrew D. Ballantyne,et al.  Lead acid battery recycling for the twenty-first century , 2018, Royal Society Open Science.

[83]  M. Nisula,et al.  In situ lithiated quinone cathode for ALD/MLD-fabricated high-power thin-film battery , 2018 .

[84]  Xuejun Zhou,et al.  High-Capacity Mg-Organic Batteries Based on Nanostructured Rhodizonate Salts Activated by Mg-Li Dual-Salt Electrolyte. , 2018, ACS nano.

[85]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[86]  I. Zozoulenko,et al.  Understanding Morphology-Mobility Dependence in PEDOT:Tos , 2018 .

[87]  S. Manzhos,et al.  Polyaniline and CN-functionalized polyaniline as organic cathodes for lithium and sodium ion batteries: a combined molecular dynamics and density functional tight binding study in solid state. , 2018, Physical chemistry chemical physics : PCCP.

[88]  Zonghai Chen,et al.  Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries. , 2018, Angewandte Chemie.

[89]  Yong Lu,et al.  High-capacity aqueous zinc batteries using sustainable quinone electrodes , 2018, Science Advances.

[90]  Sehee Lee,et al.  Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All-Solid-State Sodium Batteries. , 2018, Angewandte Chemie.

[91]  T. Endo,et al.  Hyperbranched Triphenylamine Polymer for UltraFast Battery Cathode. , 2018, ACS applied materials & interfaces.

[92]  Alistair J. Davidson,et al.  Lead batteries for utility energy storage: A review , 2018 .

[93]  Chao Zhang,et al.  Energy storage system: Current studies on batteries and power condition system , 2018 .

[94]  Timothy G. Townsend,et al.  A review on the growing concern and potential management strategies of waste lithium-ion batteries , 2018 .

[95]  P. Poizot,et al.  Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. , 2018 .

[96]  K. Oyaizu,et al.  Diffusion-Cooperative Model for Charge Transport by Redox-Active Nonconjugated Polymers. , 2018, Journal of the American Chemical Society.

[97]  J. Nan,et al.  Quinone Electrode Materials for Rechargeable Lithium/Sodium Ion Batteries , 2017 .

[98]  Guillaume Dolphijn,et al.  Hybrid LiMn2O4–radical polymer cathodes for pulse power delivery applications , 2017 .

[99]  M. Winter,et al.  Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π–π interactions , 2017 .

[100]  X. Crispin,et al.  Charge transport and structure in semimetallic polymers , 2017, Journal of polymer science. Part B, Polymer physics.

[101]  Birgit Esser,et al.  Evaluation of Cyclooctatetraene-Based Aliphatic Polymers as Battery Materials: Synthesis, Electrochemical, and Thermal Characterization Supported by DFT Calculations. , 2017, ChemPlusChem.

[102]  J. Rolland,et al.  Mechanochemical Synthesis of PEDOT:PSS Hydrogels for Aqueous Formulation of Li-Ion Battery Electrodes. , 2017, ACS applied materials & interfaces.

[103]  Erjing Wang,et al.  Carbonyl polymeric electrode materials for metal-ion batteries , 2017 .

[104]  L. Walder,et al.  High Performance Poly(viologen)-Graphene Nanocomposite Battery Materials with Puff Paste Architecture. , 2017, ACS nano.

[105]  F. Dolhem,et al.  Decreasing redox voltage of terephthalate-based electrode material for Li-ion battery using substituent effect , 2017 .

[106]  Yong Lei,et al.  Organic materials for rechargeable sodium-ion batteries , 2017 .

[107]  J. Xie,et al.  Nanostructured Conjugated Polymers: Toward High-Performance Organic Electrodes for Rechargeable Batteries , 2017 .

[108]  Jun Chen,et al.  Insoluble Benzoquinone Derivative Cathode with Rigid Ring for Organic Rechargeable Lithium-Ion Battery , 2017 .

[109]  Jun Chen,et al.  Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries , 2017, Nano Research.

[110]  K. Kang,et al.  Multi-electron redox phenazine for ready-to-charge organic batteries , 2017 .

[111]  Shaorui Sun,et al.  A theoretical method to predict novel organic electrode materials for Na-ion batteries , 2017 .

[112]  Xiao Lin,et al.  Spent lead-acid battery recycling in China - A review and sustainable analyses on mass flow of lead. , 2017, Waste management.

[113]  Fikile R. Brushett,et al.  Engineering radical polymer electrodes for electrochemical energy storage , 2017 .

[114]  X. Crispin,et al.  Oxygen Reduction Reaction in Conducting Polymer PEDOT: Density Functional Theory Study , 2017 .

[115]  W. Shen,et al.  A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries. , 2017, Physical chemistry chemical physics : PCCP.

[116]  J. Esquivel,et al.  A Metal‐Free and Biotically Degradable Battery for Portable Single‐Use Applications , 2017 .

[117]  I. Zozoulenko,et al.  Molecular Dynamics Study of Morphology of Doped PEDOT: From Solution to Dry Phase. , 2017, The journal of physical chemistry. B.

[118]  S. Jang,et al.  Systematic Molecular Design of Ketone Derivatives of Aromatic Molecules for Lithium-Ion Batteries: First-Principles DFT Modeling. , 2017, ChemSusChem.

[119]  T. Gutel,et al.  From an Enhanced Understanding to Commercially Viable Electrodes: The Case of PTCLi4 as Sustainable Organic Lithium‐Ion Anode Material , 2017 .

[120]  Yong Lu,et al.  Advanced Organic Electrode Materials for Rechargeable Sodium‐Ion Batteries , 2017 .

[121]  M. Hager,et al.  All‐Organic Battery Composed of Thianthrene‐ and TCAQ‐Based Polymers , 2017 .

[122]  U. Schubert,et al.  High-Power-Density Organic Radical Batteries , 2017, Topics in Current Chemistry.

[123]  E. Salager,et al.  2D-Layered Lithium Carboxylate Based on Biphenyl Core as Negative Electrode for Organic Lithium-Ion Batteries , 2017 .

[124]  Saad A. Al-Bogami,et al.  Crude oil to chemicals: light olefins from crude oil , 2017 .

[125]  S. Manzhos,et al.  Voltage and capacity control of polyaniline based organic cathodes: An ab initio study , 2016 .

[126]  G. Wittstock,et al.  Review of Local In Situ Probing Techniques for the Interfaces of Lithium‐Ion and Lithium–Oxygen Batteries , 2016 .

[127]  D. Brandell,et al.  Investigating the Interfacial Chemistry of Organic Electrodes in Li- and Na-Ion Batteries , 2016 .

[128]  Peng-Fei Li,et al.  The rise of organic electrode materials for energy storage. , 2016, Chemical Society reviews.

[129]  Travis W. Kemper,et al.  Molecular Dynamics Simulation Study of Solvent and State of Charge Effects on Solid-Phase Structure and Counterion Binding in a Nitroxide Radical Containing Polymer Energy Storage Material , 2016 .

[130]  M. Antonietti,et al.  Nanoporous ionic organic networks: from synthesis to materials applications. , 2016, Chemical Society reviews.

[131]  Yugen Zhang,et al.  Strategies toward improving the performance of organic electrodes in rechargeable lithium (sodium) batteries , 2016 .

[132]  Jun Chen,et al.  Oxocarbon Salts for Fast Rechargeable Batteries. , 2016, Angewandte Chemie.

[133]  Zelang Jian,et al.  A Hydrocarbon Cathode for Dual-Ion Batteries , 2016 .

[134]  P. Poizot,et al.  A dual–ion battery using diamino–rubicene as anion–inserting positive electrode material , 2016 .

[135]  U. Schubert,et al.  Polymer-Based Organic Batteries. , 2016, Chemical reviews.

[136]  D. Brandell,et al.  Enhanced performance of organic materials for lithium-ion batteries using facile electrode calendaring techniques , 2016 .

[137]  Yan Wang,et al.  Current and Prospective Li-Ion Battery Recycling and Recovery Processes , 2016 .

[138]  J. Xie,et al.  Recent progress in rechargeable lithium batteries with organic materials as promising electrodes , 2016 .

[139]  P. Moreau,et al.  Reversible anion intercalation in a layered aromatic amine: a high-voltage host structure for organic batteries , 2016 .

[140]  Yi Shi,et al.  Understanding the Size-Dependent Sodium Storage Properties of Na2C6O6-Based Organic Electrodes for Sodium-Ion Batteries. , 2016, Nano letters.

[141]  H. Matsubara,et al.  High-capacity organic cathode active materials of 2,2′-bis-p-benzoquinone derivatives for rechargeable batteries , 2016 .

[142]  K. Edström,et al.  Superlithiation of Organic Electrode Materials: The Case of Dilithium Benzenedipropiolate , 2016 .

[143]  D. Brandell,et al.  Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes , 2016, Materials.

[144]  P. Ajayan,et al.  Carbon Redox-Polymer-Gel Hybrid Supercapacitors , 2016, Scientific Reports.

[145]  S. Jang,et al.  First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries. , 2016, Journal of the American Chemical Society.

[146]  Johannes Gediga,et al.  Lead industry life cycle studies: environmental impact and life cycle assessment of lead battery and architectural sheet production , 2016, The International Journal of Life Cycle Assessment.

[147]  Yongxiang Yang,et al.  Recycling of metals from urban mines – a strategic evaluation , 2016 .

[148]  C. Gatti,et al.  Playing with isomerism and N substitution in pentalenedione derivatives for organic electrode batteries: how high are the stakes? , 2016, Physical chemistry chemical physics : PCCP.

[149]  Haoshen Zhou,et al.  Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage. , 2015, Angewandte Chemie.

[150]  D. Brandell,et al.  Understanding Ionic Transport in Polypyrrole/Nanocellulose Composite Energy Storage Devices , 2015 .

[151]  Xiayan Wang,et al.  Study of Lithium Migration Pathways in the Organic Electrode Materials of Li-Battery by Dispersion-Corrected Density Functional Theory , 2015 .

[152]  Qing Wang,et al.  High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane , 2015, Science Advances.

[153]  T. Kuemmerle,et al.  Conservation and conflict in the Democratic Republic of Congo: the impacts of warfare, mining, and protected areas on deforestation , 2015 .

[154]  J. Carrasco,et al.  Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers , 2015 .

[155]  H. Matsubara,et al.  Steric Effects on the Cyclability of Benzoquinone-type Organic Cathode Active Materials for Rechargeable Batteries , 2015 .

[156]  Weidong Zhou,et al.  Electrochemical lithiation-induced polymorphism of anthraquinone derivatives observed by operando X-ray diffraction. , 2015, Physical chemistry chemical physics : PCCP.

[157]  M. Winter,et al.  Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries. , 2015, Chemical communications.

[158]  A. Pasturel,et al.  Electrochemical and ab initio investigations to design a new phenothiazine based organic redox polymeric material for metal-ion battery cathodes. , 2015, Physical chemistry chemical physics : PCCP.

[159]  S. Flores,et al.  Bio-Inspired Electroactive Organic Molecules for Aqueous Redox Flow Batteries. 1. Thiophenoquinones , 2015 .

[160]  Tieyong Zuo,et al.  The lead-acid battery industry in China: outlook for production and recycling , 2015, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[161]  Hong Li,et al.  Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries , 2015, Science Advances.

[162]  Haoshen Zhou,et al.  Poly(benzoquinonyl sulfide) as a High‐Energy Organic Cathode for Rechargeable Li and Na Batteries , 2015, Advanced science.

[163]  H. Sano,et al.  Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier , 2015, Scientific Reports.

[164]  Ulrich S. Schubert,et al.  Carbonyls: Powerful Organic Materials for Secondary Batteries , 2015 .

[165]  J. Rolland,et al.  Melt-polymerization of TEMPO methacrylates with nano carbons enables superior battery materials. , 2015, ChemSusChem.

[166]  Prakash Sengodu,et al.  Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review , 2015 .

[167]  Zonghai Chen,et al.  A Rigid Naphthalenediimide Triangle for Organic Rechargeable Lithium‐Ion Batteries , 2015, Advanced materials.

[168]  Yan Yao,et al.  Heavily n-Dopable π-Conjugated Redox Polymers with Ultrafast Energy Storage Capability. , 2015, Journal of the American Chemical Society.

[169]  J. Lee,et al.  Nitroxide radical polymer/carbon-nanotube-array electrodes with improved C-rate performance in organic radical batteries , 2015 .

[170]  N. T. Nassar,et al.  Criticality of metals and metalloids , 2015, Proceedings of the National Academy of Sciences.

[171]  D. Dubal,et al.  Hybrid energy storage: the merging of battery and supercapacitor chemistries. , 2015, Chemical Society reviews.

[172]  R. Berger,et al.  Phenothiazine-functionalized redox polymers for a new cathode-active material , 2015 .

[173]  E. Salager,et al.  Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries , 2015, Nature Communications.

[174]  M. Abdelhamid,et al.  Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage , 2015 .

[175]  Michael P. Marshak,et al.  Computational design of molecules for an all-quinone redox flow battery , 2014, Chemical science.

[176]  H. Matsubara,et al.  Rechargeable organic lithium-ion batteries using electron-deficient benzoquinones as positive-electrode materials with high discharge voltages , 2014 .

[177]  Kristina Edström,et al.  Environmentally-friendly lithium recycling from a spent organic li-ion battery. , 2014, ChemSusChem.

[178]  E. P. Tomlinson,et al.  Radical Polymers and Their Application to Organic Electronic Devices , 2014 .

[179]  Rajeev S. Assary,et al.  Investigation of the redox chemistry of anthraquinone derivatives using density functional theory. , 2014, The journal of physical chemistry. A.

[180]  W. Goddard,et al.  The Reaction Mechanism and Capacity Degradation Model in Lithium Insertion Organic Cathodes, Li2C6O6, Using Combined Experimental and First Principle Studies. , 2014, The journal of physical chemistry letters.

[181]  K. Halada,et al.  Urban Mining Systems , 2014 .

[182]  Travis W. Kemper,et al.  Relationship between Molecular Structure and Electron Transfer in a Polymeric Nitroxyl-Radical Energy Storage Material , 2014 .

[183]  Jun Chen,et al.  All organic sodium-ion batteries with Na₄C₈H₂O₆. , 2014, Angewandte Chemie.

[184]  Jun Chen,et al.  All Organic Sodium‐Ion Batteries with Na 4 C 8 H 2 O 6 , 2014 .

[185]  B. Boudouris,et al.  Solid State Electrical Conductivity of Radical Polymers as a Function of Pendant Group Oxidation State , 2014 .

[186]  U. Schubert,et al.  PolyTCAQ in organic batteries: enhanced capacity at constant cell potential using two-electron-redox-reactions , 2014 .

[187]  Jinhui Li,et al.  Recycling of Spent Lithium-Ion Battery: A Critical Review , 2014 .

[188]  Minami Kato,et al.  A pentakis-fused tetrathiafulvalene system extended by cyclohexene-1,4-diylidenes: a new positive electrode material for rechargeable batteries utilizing ten electron redox , 2014 .

[189]  R. Hennig,et al.  Theoretical Studies of Carbonyl-Based Organic Molecules for Energy Storage Applications: The Heteroatom and Substituent Effect , 2014 .

[190]  A. Vlad,et al.  Hybrid supercapacitor-battery materials for fast electrochemical charge storage , 2014, Scientific Reports.

[191]  Jun Chen,et al.  2,2′-Bis(3-hydroxy-1,4-naphthoquinone)/CMK-3 nanocomposite as cathode material for lithium-ion batteries , 2014 .

[192]  Callie W. Babbitt,et al.  A future perspective on lithium-ion battery waste flows from electric vehicles , 2014 .

[193]  Sanguthevar Rajasekaran,et al.  Accelerating materials property predictions using machine learning , 2013, Scientific Reports.

[194]  Jiwen Feng,et al.  A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode , 2013, Scientific Reports.

[195]  Jared F. Mike,et al.  Electrochemically Active Polymers for Electrochemical Energy Storage: Opportunities and Challenges. , 2013, ACS macro letters.

[196]  Jun Chen,et al.  Organic Li4C8H2O6 nanosheets for lithium-ion batteries. , 2013, Nano letters.

[197]  Hao Li,et al.  Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte. , 2013, Angewandte Chemie.

[198]  Haoshen Zhou,et al.  Towards sustainable and versatile energy storage devices: an overview of organic electrode materials , 2013 .

[199]  A. Chagnes,et al.  A brief review on hydrometallurgical technologies for recycling spent lithium‐ion batteries , 2013 .

[200]  Philippe Poizot,et al.  A green Li-organic battery working as a fuel cell in case of emergency , 2013 .

[201]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[202]  Shigeto Okada,et al.  Cathode properties of Na2C6O6 for sodium-ion batteries , 2013 .

[203]  Jared F. Mike,et al.  Recent advances in conjugated polymer energy storage , 2013 .

[204]  D. Mecerreyes,et al.  Polymers with redox properties: materials for batteries, biosensors and more , 2013 .

[205]  T. Gustafsson,et al.  Improving the electrochemical performance of organic Li-ion battery electrodes. , 2013, Chemical communications.

[206]  Ulrich S. Schubert,et al.  Powering up the Future: Radical Polymers for Battery Applications , 2012, Advanced materials.

[207]  Hiroshi Senoh,et al.  Mg2+ Storage in Organic Positive-electrode Active Material Based on 2,5-Dimethoxy-1,4-benzoquinone , 2012 .

[208]  T. Nokami,et al.  Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. , 2012, Journal of the American Chemical Society.

[209]  M. Desmulliez,et al.  Inkjet printing of conductive materials: a review , 2012 .

[210]  K. Amine,et al.  Smart Polymeric Cathode Material with Intrinsic Overcharge Protection Based on a 2,5‐Di‐tert‐butyl‐ 1,4‐dimethoxybenzene Core Structure , 2012 .

[211]  Thomas F. Jaramillo,et al.  Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy , 2012 .

[212]  M. Armand,et al.  Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .

[213]  Seung M. Oh,et al.  Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries , 2012, Advanced materials.

[214]  Jun Chen,et al.  Organic Electrode Materials for Rechargeable Lithium Batteries , 2012 .

[215]  R. Kötz,et al.  Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits , 2012 .

[216]  M. Shibuya,et al.  Oxidation of nitroxyl radicals: electrochemical and computational studies , 2012 .

[217]  Jianjun Li,et al.  Charge rate influence on the electrochemical performance of LiFePO4 electrode with redox shuttle additive in electrolyte , 2012, Ionics.

[218]  Philippe Poizot,et al.  Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices , 2011 .

[219]  Anders Hammer Strømman,et al.  Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. , 2011, Environmental science & technology.

[220]  K. Oyaizu,et al.  p‐ and n‐Type Bipolar Redox‐Active Radical Polymer: Toward Totally Organic Polymer‐Based Rechargeable Devices with Variable Configuration , 2011, Advanced materials.

[221]  K. Nakahara,et al.  Organic Radical Battery Approaching Practical Use , 2011 .

[222]  Tetsuo Sakai,et al.  High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries , 2010 .

[223]  P. Searson,et al.  Batteries and charge storage devices based on electronically conducting polymers , 2010 .

[224]  Yunhong Zhou,et al.  Polyimides: promising energy-storage materials. , 2010, Angewandte Chemie.

[225]  Kenichiroh Koshika,et al.  Environmentally benign batteries based on organic radical polymers , 2009 .

[226]  Göran Finnveden,et al.  Plastic waste as a fuel - CO2-neutral or not? , 2009 .

[227]  K. Oyaizu,et al.  Radical Polymers for Organic Electronic Devices: A Radical Departure from Conjugated Polymers? , 2009 .

[228]  Jean-Marie Tarascon,et al.  Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. , 2009, Journal of the American Chemical Society.

[229]  Jean-Marie Tarascon,et al.  Electrochemical Reactivity of Lithium Chloranilate vs Li and Crystal Structures of the Hydrated Phases , 2009 .

[230]  Hiroyuki Nishide,et al.  Emerging N‐Type Redox‐Active Radical Polymer for a Totally Organic Polymer‐Based Rechargeable Battery , 2009 .

[231]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[232]  Jean-Marie Tarascon,et al.  From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. , 2008, ChemSusChem.

[233]  H. X. Yang,et al.  Polytriphenylamine: A high power and high capacity cathode material for rechargeable lithium batteries , 2008 .

[234]  Hiroyuki Nishide,et al.  Toward Flexible Batteries , 2008, Science.

[235]  S. Bottle,et al.  One-electron oxidation and reduction potentials of nitroxide antioxidants: a theoretical study. , 2007, The journal of physical chemistry. A.

[236]  Hiroyuki Nishide,et al.  Photocrosslinked nitroxide polymer cathode-active materials for application in an organic-based paper battery. , 2007, Chemical communications.

[237]  Hiroyuki Nishide,et al.  Cathode- and Anode-Active Poly(nitroxylstyrene)s for Rechargeable Batteries: p- and n-Type Redox Switching via Substituent Effects , 2007 .

[238]  Qing Wang,et al.  Molecular wiring of insulators: charging and discharging electrode materials for high-energy lithium-ion batteries by molecular charge transport layers. , 2007, Journal of the American Chemical Society.

[239]  Máximo Barón,et al.  Definitions of terms relating to reactions of polymers and to functional polymeric materials (IUPAC Recommendations 2003) , 2004 .

[240]  Shigeyuki Iwasa,et al.  Rechargeable batteries with organic radical cathodes , 2002 .

[241]  A. Vadivel Murugan,et al.  Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices , 1999 .

[242]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[243]  C. L. Bird,et al.  Electrochemistry of the viologens , 1981 .

[244]  K. Deuchert,et al.  Multistage Organic Redox Systems—A General Structural Principle , 1978 .

[245]  Yu Zhao,et al.  Manipulation of conjugation to stabilize N redox-active centers for the design of high-voltage organic battery cathode , 2019, Energy Storage Materials.

[246]  Darlene Steward,et al.  Economics and Challenges of Li-Ion Battery Recycling from End-of-Life Vehicles , 2019, Procedia Manufacturing.

[247]  Libin Liu,et al.  Review of recent achievements in self-healing conductive materials and their applications , 2017, Journal of Materials Science.

[248]  Manuel Baumann,et al.  The environmental impact of Li-Ion batteries and the role of key parameters – A review , 2017 .

[249]  H. Sardón,et al.  Current trends in redox polymers for energy and medicine , 2016 .

[250]  Jun Chen,et al.  Review—Advanced Carbon-Supported Organic Electrode Materials for Lithium (Sodium)-Ion Batteries , 2015 .

[251]  Mohammad J. Taherzadeh,et al.  Industrial biorefineries and white biotechnology , 2015 .

[252]  Ilja Pawel,et al.  The Cost of Storage – How to Calculate the Levelized Cost of Stored Energy (LCOE) and Applications to Renewable Energy Generation , 2014 .

[253]  Jiro Iriyama,et al.  Al-laminated film packaged organic radical battery for high-power applications , 2007 .

[254]  N. Oyama,et al.  Dimercaptan–polyaniline composite electrodes for lithium batteries with high energy density , 1995, Nature.

[255]  Paul J. Nigrey,et al.  Organic batteries: reversible n- and p- type electrochemical doping of polyacetylene, (CH)x , 1981 .

[256]  J. Driscoll,et al.  A High Energy Density Lithium/Dichloroisocyanuric Acid Battery System , 1969 .