Commutator criteria for strong mixing II. More general and simpler

We present a new criterion, based on commutator methods, for the strong mixing property of unitary representations of topological groups equipped with a proper length function. Our result generalises and unifies recent results on the strong mixing property of discrete flows $\{U^N\}_{N\in\mathbb Z}$ and continuous flows $\{{\rm e}^{-itH}\}_{t\in\mathbb R}$ induced by unitary operators $U$ and self-adjoint operators $H$ in a Hilbert space. As an application, we present a short alternative proof (not using convolutions) of the strong mixing property of the left regular representation of $\sigma$-compact locally compact groups.

[1]  R. Tiedra de Aldecoa,et al.  Furstenberg Transformations on Cartesian Products of Infinite-Dimensional Tori , 2015, 1501.06245.

[2]  R. T. Aldecoa Commutator criteria for strong mixing , 2014, 1406.5777.

[3]  P. Harpe,et al.  Metric Geometry of Locally Compact Groups , 2014, 1403.3796.

[4]  R. T. Aldecoa The absolute continuous spectrum of skew products of compact Lie groups , 2013, 1307.7348.

[5]  R. T. Aldecoa Commutator methods for the spectral analysis of uniquely ergodic dynamical systems , 2012, 1208.3784.

[6]  R. T. Aldecoa Spectral analysis of time changes for horocycle flows , 2012, 1202.4640.

[7]  C. Fernández,et al.  Commutator methods for unitary operators , 2011, 1112.0167.

[8]  N. Louvet,et al.  The Howe-Moore property for real and p-adic groups , 2010, 1003.1484.

[9]  Matthias Mayer,et al.  Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces , 2000 .

[10]  J. Rosenblatt,et al.  Mixing actions of groups , 1988 .

[11]  K. Schmidt Asymptotic Properties of Unitary Representations and Mixing , 1984 .

[12]  R. Howe,et al.  Asymptotic properties of unitary representations , 1979 .

[13]  B. Z. Moroz,et al.  london mathematical society lecture note series , 2007 .

[14]  A. B. D. Monvel,et al.  C[0]-groups, commutator methods and spectral theory of N-Body Hamiltonians , 1996 .

[15]  A. Lubotzky,et al.  Asymptotic Properties of Unitary Representations of Tree Automorphisms , 1992 .

[16]  Robert J. Zimmer,et al.  Ergodic Theory and Semisimple Groups , 1984 .

[17]  Robert J. Zimmer,et al.  Kazhdan’s Property (T) , 1984 .