A Variational Characterization of the Risk-Sensitive Average Reward for Controlled Diffusions on ℝd

We address the variational formulation of the risk-sensitive reward problem for non-degenerate diffusions on $\mathbb{R}^d$ controlled through the drift. We establish a variational formula on the whole space and also show that the risk-sensitive value equals the generalized principal eigenvalue of the semilinear operator. This can be viewed as a controlled version of the variational formulas for principal eigenvalues of diffusion operators arising in large deviations. We also revisit the average risk-sensitive minimization problem and by employing a gradient estimate developed in this paper, we extend earlier results to unbounded drifts and running costs.

[1]  S. Varadhan,et al.  On a variational formula for the principal eigenvalue for operators with maximum principle. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Varadhan,et al.  On the principal eigenvalue of second‐order elliptic differential operators , 1976 .

[3]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[4]  S. Meyn,et al.  Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.

[5]  S. Varadhan,et al.  The principal eigenvalue and maximum principle for second‐order elliptic operators in general domains , 1994 .

[6]  T. Ogiwara Nonlinear Perron-Frobenius problem on an ordered Banach space , 1995 .

[7]  W. Fleming,et al.  Risk-Sensitive Control on an Infinite Time Horizon , 1995 .

[8]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[9]  Ya-Zhe Chen,et al.  Second Order Elliptic Equations and Elliptic Systems , 1998 .

[10]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[11]  A. Rhandi,et al.  Global properties of invariant measures , 2005 .

[12]  B. Sirakov,et al.  Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators , 2008 .

[13]  S. Patrizi Principal Eigenvalues for Isaacs Operators with Neumann Boundary Conditions , 2008, 0802.0452.

[14]  É. Pardoux,et al.  A Probabilistic Formula for a Poisson Equation with Neumann Boundary Condition , 2009 .

[15]  S. Armstrong The Dirichlet problem for the Bellman equation at resonance , 2008, 0812.1327.

[16]  H. Berestycki,et al.  Generalizations and Properties of the Principal Eigenvalue of Elliptic Operators in Unbounded Domains , 2010, 1008.4871.

[17]  Anup Biswas An eigenvalue approach to the risk sensitive control problem in near monotone case , 2011, Syst. Control. Lett..

[18]  S. Gaubert,et al.  A Collatz-Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones , 2011, 1112.5968.

[19]  Bas Lemmens,et al.  Nonlinear Perron-Frobenius Theory , 2012 .

[20]  Naoyuki Ichihara Criticality of viscous Hamilton–Jacobi equations and stochastic ergodic control , 2013 .

[21]  A. Arapostathis,et al.  Risk-Sensitive Control and an Abstract Collatz–Wielandt Formula , 2013, 1312.5834.

[22]  Y. Kamarianakis Ergodic control of diffusion processes , 2013 .

[23]  Naoyuki Ichihara The generalized principal eigenvalue for Hamilton–Jacobi–Bellman equations of ergodic type , 2015 .

[24]  A. Arapostathis,et al.  Infinite horizon risk-sensitive control of diffusions without any blanket stability assumptions , 2016, 1601.00258.

[25]  A. Biswas,et al.  Zero-Sum Stochastic Differential Games with Risk-Sensitive Cost , 2017, 1704.02689.

[26]  Vivek S. Borkar,et al.  A Variational Formula for Risk-Sensitive Reward , 2015, SIAM J. Control. Optim..

[27]  A. Arapostathis,et al.  Controlled equilibrium selection in stochastically perturbed dynamics , 2015, The Annals of Probability.

[28]  A. Arapostathis,et al.  Certain Liouville properties of eigenfunctions of elliptic operators , 2017, Transactions of the American Mathematical Society.

[29]  Emmanuel Chasseigne,et al.  Ergodic Problems for Viscous Hamilton-Jacobi Equations with Inward Drift , 2019, SIAM J. Control. Optim..

[30]  A. Arapostathis,et al.  Strict monotonicity of principal eigenvalues of elliptic operators in Rd and risk-sensitive control , 2017, Journal de Mathématiques Pures et Appliquées.

[31]  Ari Arapostathis,et al.  A Variational Formula for Risk-Sensitive Control of Diffusions in ℝd , 2018, SIAM J. Control. Optim..