A Variational Characterization of the Risk-Sensitive Average Reward for Controlled Diffusions on ℝd
暂无分享,去创建一个
Vivek S. Borkar | Ari Arapostathis | Anup Biswas | K. Suresh Kumar | A. Arapostathis | V. Borkar | A. Biswas | K. S. Kumar
[1] S. Varadhan,et al. On a variational formula for the principal eigenvalue for operators with maximum principle. , 1975, Proceedings of the National Academy of Sciences of the United States of America.
[2] S. Varadhan,et al. On the principal eigenvalue of second‐order elliptic differential operators , 1976 .
[3] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[4] S. Meyn,et al. Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.
[5] S. Varadhan,et al. The principal eigenvalue and maximum principle for second‐order elliptic operators in general domains , 1994 .
[6] T. Ogiwara. Nonlinear Perron-Frobenius problem on an ordered Banach space , 1995 .
[7] W. Fleming,et al. Risk-Sensitive Control on an Infinite Time Horizon , 1995 .
[8] Amir Dembo,et al. Large Deviations Techniques and Applications , 1998 .
[9] Ya-Zhe Chen,et al. Second Order Elliptic Equations and Elliptic Systems , 1998 .
[10] Carl D. Meyer,et al. Matrix Analysis and Applied Linear Algebra , 2000 .
[11] A. Rhandi,et al. Global properties of invariant measures , 2005 .
[12] B. Sirakov,et al. Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators , 2008 .
[13] S. Patrizi. Principal Eigenvalues for Isaacs Operators with Neumann Boundary Conditions , 2008, 0802.0452.
[14] É. Pardoux,et al. A Probabilistic Formula for a Poisson Equation with Neumann Boundary Condition , 2009 .
[15] S. Armstrong. The Dirichlet problem for the Bellman equation at resonance , 2008, 0812.1327.
[16] H. Berestycki,et al. Generalizations and Properties of the Principal Eigenvalue of Elliptic Operators in Unbounded Domains , 2010, 1008.4871.
[17] Anup Biswas. An eigenvalue approach to the risk sensitive control problem in near monotone case , 2011, Syst. Control. Lett..
[18] S. Gaubert,et al. A Collatz-Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones , 2011, 1112.5968.
[19] Bas Lemmens,et al. Nonlinear Perron-Frobenius Theory , 2012 .
[20] Naoyuki Ichihara. Criticality of viscous Hamilton–Jacobi equations and stochastic ergodic control , 2013 .
[21] A. Arapostathis,et al. Risk-Sensitive Control and an Abstract Collatz–Wielandt Formula , 2013, 1312.5834.
[22] Y. Kamarianakis. Ergodic control of diffusion processes , 2013 .
[23] Naoyuki Ichihara. The generalized principal eigenvalue for Hamilton–Jacobi–Bellman equations of ergodic type , 2015 .
[24] A. Arapostathis,et al. Infinite horizon risk-sensitive control of diffusions without any blanket stability assumptions , 2016, 1601.00258.
[25] A. Biswas,et al. Zero-Sum Stochastic Differential Games with Risk-Sensitive Cost , 2017, 1704.02689.
[26] Vivek S. Borkar,et al. A Variational Formula for Risk-Sensitive Reward , 2015, SIAM J. Control. Optim..
[27] A. Arapostathis,et al. Controlled equilibrium selection in stochastically perturbed dynamics , 2015, The Annals of Probability.
[28] A. Arapostathis,et al. Certain Liouville properties of eigenfunctions of elliptic operators , 2017, Transactions of the American Mathematical Society.
[29] Emmanuel Chasseigne,et al. Ergodic Problems for Viscous Hamilton-Jacobi Equations with Inward Drift , 2019, SIAM J. Control. Optim..
[30] A. Arapostathis,et al. Strict monotonicity of principal eigenvalues of elliptic operators in Rd and risk-sensitive control , 2017, Journal de Mathématiques Pures et Appliquées.
[31] Ari Arapostathis,et al. A Variational Formula for Risk-Sensitive Control of Diffusions in ℝd , 2018, SIAM J. Control. Optim..