On the efficient implementation of preconditioned s-step conjugate gradient methods on multiprocessors with memory hierarchy

Abstract Multiprocessor architectures combining vector and parallel processing capabilities on a two-level shared memory structure have been implemented. This memory hierarchy structure requires that numerical algorithms possess good data locality in order to achieve high performance rates. The s-step Conjugate Gradient method (s-CG) is a generalization of the standard CG method with improved data locality and parallel properties. Here we show how to implement efficiently the Incomplete Cholesky and Polynomial Preconditioning with s-CG on multiprocessors with memory hierarchy.

[1]  Jack Dongarra,et al.  Linear algebra on high performance computers , 1986 .

[2]  William Jalby,et al.  Optimizing matrix operations on a parallel multiprocessor with a memory hierarchy , 1986 .

[3]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[4]  Henk A. van der Vorst,et al.  A Vectorizable Variant of some ICCG Methods , 1982 .

[5]  Anthony T. Chronopoulos A class of parallel iterative methods implemented on multiprocessors , 1987 .

[6]  C. Micchelli,et al.  Polynomial Preconditioners for Conjugate Gradient Calculations , 1983 .

[7]  L. Adams m-Step Preconditioned Conjugate Gradient Methods , 1985 .

[8]  T. L. Jordan A Guide to Parallel Computation and Some Cray-1 Experiences , 1982 .

[9]  G. Meurant The block preconditioned conjugate gradient method on vector computers , 1984 .

[10]  Henk A. van der Vorst,et al.  The performance of FORTRAN implementations for preconditioned conjugate gradients on vector computers , 1986, Parallel Comput..

[11]  Anthony T. Chronopoulos,et al.  s-step iterative methods for symmetric linear systems , 1989 .

[12]  Y. Saad,et al.  Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method , 1985 .

[13]  J. Vanrosendale,et al.  Minimizing inner product data dependencies in conjugate gradient iteration , 1983 .

[14]  Kevin J. M. Moriarty,et al.  A Modified Conjugate Gradient Solver for Very Large Systems , 1985, ICPP.

[15]  G. Golub,et al.  Block Preconditioning for the Conjugate Gradient Method , 1985 .

[16]  D. O’Leary The block conjugate gradient algorithm and related methods , 1980 .

[17]  Y. Saad,et al.  On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .

[18]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .