A fast Chebyshev method for simulating flexible-wing propulsion

Abstract We develop a highly efficient numerical method to simulate small-amplitude flapping propulsion by a flexible wing in a nearly inviscid fluid. We allow the wing's elastic modulus and mass density to vary arbitrarily, with an eye towards optimizing these distributions for propulsive performance. The method to determine the wing kinematics is based on Chebyshev collocation of the 1D beam equation as coupled to the surrounding 2D fluid flow. Through small-amplitude analysis of the Euler equations (with trailing-edge vortex shedding), the complete hydrodynamics can be represented by a nonlocal operator that acts on the 1D wing kinematics. A class of semi-analytical solutions permits fast evaluation of this operator with O ( N log ⁡ N ) operations, where N is the number of collocation points on the wing. This is in contrast to the minimum O ( N 2 ) cost of a direct 2D fluid solver. The coupled wing–fluid problem is thus recast as a PDE with nonlocal operator, which we solve using a preconditioned iterative method. These techniques yield a solver of near-optimal complexity, O ( N log ⁡ N ) , allowing one to rapidly search the infinite-dimensional parameter space of all possible material distributions and even perform optimization over this space.

[1]  C. Eloy Optimal Strouhal number for swimming animals , 2011, 1102.0223.

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  Toshiyuki Nakata,et al.  A fluid-structure interaction model of insect flight with flexible wings , 2012, J. Comput. Phys..

[4]  Flapping propulsion using a fin ray , 2011, Journal of Fluid Mechanics.

[5]  A. Alexeev,et al.  Resonance of flexible flapping wings at low Reynolds number. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  A. Its The Riemann-Hilbert Problem and Integrable Systems , 2003 .

[7]  J Muelle,et al.  AERODYNAMICS OF SMALL VEHICLES , 2004 .

[8]  A. Fokas,et al.  Complex Variables: Introduction and Applications , 1997 .

[9]  Sunil Agrawal,et al.  Development of insect thorax based flapping mechanism , 2009, 2009 IEEE International Conference on Robotics and Automation.

[10]  H G Kussner,et al.  The oscillating wing with aerodynamically balanced elevator , 1941 .

[11]  Keith Moored,et al.  Batoid Fishes: Inspiration for the Next Generation of Underwater Robots , 2011 .

[12]  S. Alben Flexible sheets falling in an inviscid fluid , 2010 .

[13]  Jun Zhang,et al.  Flapping and Bending Bodies Interacting with Fluid Flows , 2011 .

[14]  David J. Evans Preconditioned Iterative Methods , 1994 .

[15]  Silas Alben,et al.  Simulating the dynamics of flexible bodies and vortex sheets , 2009, J. Comput. Phys..

[16]  M. Triantafyllou,et al.  Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion , 1993 .

[17]  Nico M. Temme,et al.  Numerical methods for special functions , 2007 .

[18]  D. Quinn,et al.  Inviscid Scaling Laws of a Self-Propelled Pitching Airfoil , 2017, AIAA Journal.

[19]  L. Fauci,et al.  Biofluidmechanics of Reproduction , 2006 .

[20]  J. P. Whitney,et al.  Conceptual design of flapping-wing micro air vehicles , 2012, Bioinspiration & biomimetics.

[21]  J. F. Doyle,et al.  Dynamic pitching of an elastic rectangular wing in hovering motion , 2012, Journal of Fluid Mechanics.

[22]  Katarina Gustavsson,et al.  A numerical method for simulations of rigid fiber suspensions , 2006, J. Comput. Phys..

[23]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[24]  Sam Heathcote,et al.  Flexible flapping airfoil propulsion at low Reynolds numbers , 2005 .

[25]  S. Childress Mechanics of swimming and flying: Frontmatter , 1977 .

[26]  Peter A. Dewey,et al.  Bioinspired Propulsion Mechanisms Based on Manta Ray Locomotion , 2011 .

[27]  Leslie Greengard,et al.  A fast multipole method for the three-dimensional Stokes equations , 2008, J. Comput. Phys..

[28]  M. Nicholas J. Moore,et al.  Analytical results on the role of flexibility in flapping propulsion , 2014, Journal of Fluid Mechanics.

[29]  Tee Tai Lim,et al.  Modeling and analysis of insect-like flexible wings at low Reynolds number , 2016 .

[30]  William H. Mitchell,et al.  A generalized traction integral equation for Stokes flow, with applications to near-wall particle mobility and viscous erosion , 2016, J. Comput. Phys..

[31]  M. Shelley,et al.  Falling cards , 2005, Journal of Fluid Mechanics.

[32]  J K Shang,et al.  Artificial insect wings of diverse morphology for flapping-wing micro air vehicles , 2009, Bioinspiration & biomimetics.

[33]  Lixing Han,et al.  Implementing the Nelder-Mead simplex algorithm with adaptive parameters , 2010, Computational Optimization and Applications.

[34]  Rye M. Waldman,et al.  Aerodynamic Characterization of a Wing Membrane with Variable Compliance , 2014 .

[35]  Peter A. Dewey,et al.  Linear instability mechanisms leading to optimally efficient locomotion with flexible propulsors , 2014 .

[36]  Silas Alben,et al.  Regularizing a vortex sheet near a separation point , 2010, J. Comput. Phys..

[37]  Shawn W. Walker,et al.  Optimization of chiral structures for microscale propulsion. , 2013, Nano letters.

[38]  Leslie Greengard,et al.  Integral Equation Methods for Unsteady Stokes Flow in Two Dimensions , 2012, SIAM J. Sci. Comput..

[39]  Florine Paraz,et al.  Thrust generation by a heaving flexible foil: Resonance, nonlinearities, and optimality , 2016 .

[40]  T. Y. Wu,et al.  Extraction of Flow Energy by Fish and Birds in a Wavy Stream , 1975 .

[41]  Anand U. Oza,et al.  Flow interactions lead to orderly formations of flapping wings in forward flight , 2016 .

[42]  Ismail H. Tuncer,et al.  Optimization of Flapping Airfoils For Maximum Thrust and Propulsive Efficiency , 2005 .

[43]  Kelsey N. Lucas,et al.  Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model , 2015, Bioinspiration & biomimetics.

[44]  A. Smits,et al.  Scaling the propulsive performance of heaving flexible panels , 2013, Journal of Fluid Mechanics.

[45]  D. Snyder,et al.  Modern Adaptation of Prandtl's Classic Lifting-Line Theory , 2000 .

[46]  Peter A. Dewey,et al.  Scaling laws for the thrust production of flexible pitching panels , 2013, Journal of Fluid Mechanics.

[47]  Adrian L. R. Thomas,et al.  Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency , 2003, Nature.

[48]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[49]  A. R. Ennos THE IMPORTANCE OF TORSION IN THE DESIGN OF INSECT WINGS , 1988 .

[50]  Y. Saad Krylov subspace methods for solving large unsymmetric linear systems , 1981 .

[51]  Ramiro Godoy-Diana,et al.  How wing compliance drives the efficiency of self-propelled flapping flyers. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Ilse C. F. Ipsen,et al.  GMRES and the minimal polynomial , 1996 .

[53]  Leslie Greengard,et al.  On the Numerical Solution of Two-Point Boundary Value Problems , 1991 .

[54]  M. A. MacIver,et al.  Aquatic manoeuvering with counter-propagating waves: a novel locomotive strategy , 2011, Journal of The Royal Society Interface.

[55]  Qiang Zhu,et al.  Performance of a wing with nonuniform flexibility in hovering flight , 2013 .

[56]  Jie Shen,et al.  Efficient Spectral-Galerkin Method II. Direct Solvers of Second- and Fourth-Order Equations Using Chebyshev Polynomials , 1995, SIAM J. Sci. Comput..

[57]  Leslie Greengard,et al.  Spectral integration and two-point boundary value problems , 1991 .

[58]  Hilary Bart-Smith,et al.  Hydrodynamic Performance of Aquatic Flapping: Efficiency of Underwater Flight in the Manta , 2016 .

[59]  Alexander J. Smits,et al.  Maximizing the efficiency of a flexible propulsor using experimental optimization , 2014, Journal of Fluid Mechanics.

[60]  S. Alben On the swimming of a flexible body in a vortex street , 2009, Journal of Fluid Mechanics.

[61]  Jun Zhang,et al.  Surprising behaviors in flapping locomotion with passive pitching , 2010 .

[62]  J. D. Delaurier,et al.  THE DEVELOPMENT AND TESTING OF A FULL-SCALE PILOTED ORNITHOPTER , 1999 .

[63]  Toshiyuki Nakata,et al.  Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach , 2012, Proceedings of the Royal Society B: Biological Sciences.

[64]  M. Nicholas J. Moore,et al.  Riemann‐Hilbert Problems for the Shapes Formed by Bodies Dissolving, Melting, and Eroding in Fluid Flows , 2017 .

[65]  C. T. Kelley,et al.  GMRES and Integral Operators , 1996, SIAM J. Sci. Comput..

[66]  T. Trogdon,et al.  Nonlinear Steepest Descent and Numerical Solution of Riemann‐Hilbert Problems , 2012, 1205.5604.

[67]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[68]  Sébastien Michelin,et al.  An unsteady point vortex method for coupled fluid–solid problems , 2009 .

[69]  Michael J. Shelley,et al.  Applying a second-kind boundary integral equation for surface tractions in Stokes flow , 2011, J. Comput. Phys..

[70]  K. Breuer,et al.  Steady and Unsteady Fluid-Structure Interactions with Compliant Membrane Wings , 2017 .

[71]  Qing Xiao,et al.  Passive Flexibility Effect on Oscillating Foil Energy Harvester , 2016 .

[72]  Silas Alben,et al.  Optimal flexibility of a flapping appendage in an inviscid fluid , 2008, Journal of Fluid Mechanics.

[73]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[74]  Michael J. Shelley,et al.  Modeling simple locomotors in Stokes flow , 2010, J. Comput. Phys..

[75]  S. Alben Passive and active bodies in vortex-street wakes , 2009, Journal of Fluid Mechanics.

[76]  J. Katz,et al.  Low-Speed Aerodynamics , 1991 .

[77]  T. Y. Wu,et al.  Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid , 1971, Journal of Fluid Mechanics.

[78]  T. Mueller,et al.  AERODYNAMICS OF SMALL VEHICLES , 2003 .

[79]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[80]  Huosheng Hu,et al.  Biological inspiration: From carangiform fish to multi-joint robotic fish , 2010 .

[81]  Ernst A. van Nierop,et al.  How bumps on whale flippers delay stall: an aerodynamic model. , 2008, Physical review letters.

[82]  S. Michelin,et al.  Resonance and propulsion performance of a heaving flexible wing , 2009, 0906.2804.

[83]  O. S. Pak,et al.  Maximizing propulsive thrust of a driven filament at low Reynolds number via variable flexibility. , 2016, Soft matter.

[84]  Hu Dai,et al.  Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems , 2014, J. Comput. Phys..

[85]  Jun Zhang,et al.  Shape dynamics and scaling laws for a body dissolving in fluid flow , 2015, Journal of Fluid Mechanics.

[86]  Eric Lauga,et al.  Geometric capture and escape of a microswimmer colliding with an obstacle. , 2014, Soft matter.

[87]  Sheehan Olver,et al.  A Fast and Well-Conditioned Spectral Method , 2012, SIAM Rev..

[88]  J. P. Whitney,et al.  Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight. , 2011, Integrative and comparative biology.

[89]  Leif Ristroph,et al.  Stable hovering of a jellyfish-like flying machine , 2014, Journal of The Royal Society Interface.

[90]  Alan Edelman,et al.  Julia: A Fast Dynamic Language for Technical Computing , 2012, ArXiv.

[91]  M. Triantafyllou,et al.  Oscillating foils of high propulsive efficiency , 1998, Journal of Fluid Mechanics.

[92]  L. Greengard,et al.  Simple and efficient representations for the fundamental solutions of Stokes flow in a half-space , 2015, Journal of Fluid Mechanics.

[93]  T. Y. Wu,et al.  Swimming of a waving plate , 1961, Journal of Fluid Mechanics.

[94]  M. Moore Torsional spring is the optimal flexibility arrangement for thrust production of a flapping wing , 2015 .

[95]  I. Hunter,et al.  The Development of a Biologically Inspired Propulsor for Unmanned Underwater Vehicles , 2007, IEEE Journal of Oceanic Engineering.

[96]  Alex Solomonoff,et al.  Accuracy and Speed in Computing the Chebyshev Collocation Derivative , 1995, SIAM J. Sci. Comput..

[97]  G. Lauder,et al.  Dynamics of freely swimming flexible foils , 2011 .